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Abstract—The preference functions method is described for prediction of membrane-buried
helices in membrane proteins. Preference for the «-helix conformation of amino acid residue
in a sequence is a non-linear function of average hydrophobicity of its sequence neighbors.
Kyte-Doolittle hydropathy values are used to extract preference functions from a training
data set of integral membrane proteins of partially known secondary structure. Preference
functions for f-sheet, turn and undefined conformation are also extracted by including -
class soluble proteins of known structure in the training data set. Conformational prefer-
ences are compared in tested sequence for each residue and predicted secondary structure is
associated with the highest preference. This procedure is incorporated in an algorithm that
performs accurate prediction of transmembrane helical segments. Correct sequence location
and secondary structure of transmembrane segments is predicted for 20 of 21 reference
membrane polypeptides with known crystal structure that were not included in the training
data set. Comparison with hydrophobicity plots revealed that our preference profiles are
more accurate and exhibit higher resolution and less noise. Shorter unstable or movable
membrane-buried o-helices are also predicted to exist in different membrane proteins with
transport function. For instance, in the sequence of voltage-gated ion channels and gluta-
mate receptors, N-terminal parts of known P-segments can be located as characteristic a-
helix preference peaks. Our e-mail server: predict@drava.ctfos.hr, returns a preference pro-
file and secondary structure prediction for a suspected or known membrane protein when
its sequence is submitted. © 1998 Elsevier Science Ltd. All rights reserved

Key words: integral membrane proteins, secondary structure prediction, a-helices, hydropho-
bicity, preference functions, voltage-gated ion channels

1. INTRODUCTION

Regular secondary structure of fully saturated
hydrogen bond patterns is expected for polypeptide
membrane domains (Jihnig, 1989). Ten residues or
even less are sufficient to span the membrane as fi-
strands (Weiss and Schulz, 1992; Cowan and
Rosenbusch, 1994), but 20 or more residues are
commonly found in membrane-spanning helices
(Deisenhofer et al., 1985; Reithmeier, 1995; Pebay-
Peyroula et al., 1997).

Hydrophobicity plots (Kyte and Doolittle, 1982)
have often been used to reveal putative transmem-
brane helices (TMH) in integral membrane proteins.
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Hydrophobicity analysis is still being regarded as
the best tool for sequence analysis (White, 1994).
Different improved schemes that use hydropathy
values to predict transmembrane domains have
been developed during the past 10 years (Klein et
al., 1985; von Heijne, 1986; Bangham, 1988;
Ponnuswamy and Gromiha, 1993). However, tested
prediction accuracy is low (Fasman and Gilbert,
1990; Jihnig, 1990; Ponnuswamy and Gromiha,
1993) with polypeptides of known structure from
the photosynthetic reaction center (Deisenhofer et
al., 1985). Prediction depends on the subjective
choice of sliding window length and threshold
height. These parameters are often chosen to sup-
port experimental observations and homology
analysis for tested sequences. Hydrophobicity analy-
sis advocated erroneous secondary structure models
of some membrane proteins (Fasman and Gilbert,
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1990; Wo and Oswald, 1995b) and predicted trans-
membrane segments in soluble proteins (Jennings,
1989). Recently found evidence that the transmem-
brane segment, expected to have the a-helix confor-
mation, can contain only ten or fewer residues
(Goldstein, 1996), has caused new problems in
attempts to use the hydrophobicity profile as a
guide for uncovering the secondary structure. These
problems were anticipated by Lodish (1988), who
pointed out that inner transmembrane helices in
multi-spanning membrane proteins need not be in
contact with lipids at all and can span the mem-
brane in much less than 20 residues.

The main difficulty in predicting sequence lo-
cation and the secondary structure of membrane-
spanning segments with modern pattern recognition
statistical methods (Edelman, 1993; Jones et al.,
1994; Rost er al., 1995) is the limited data base of
membrane proteins of known structure. Few known
crystal structures of membrane proteins provide the
parameters and also (inappropriately) serve as test
cases for the predictive methods (Reithmeier, 1995).
Prediction accuracy is still not satisfactory. For
instance Rost er al.’s (1995) neural network predic-
tor overpredicted membrane-spanning segments in
the photosynthetic reaction center subunits M and
L, underpredicted the first transmembrane helix in
plant light-harvesting protein LHC _II, and did not
recognize membrane-spanning segments in integral
membrane protein FtsH from Escherichia coli and
spiralin from Spliroplasma melliferum, i.e. it did not
recognize these proteins as membrane proteins.
Important extension is the topology prediction for
transmembrane proteins, such as that of Rost et al.
(1996a), which predicts the orientation of all protein
domains with respect to membrane. The “positive
inside rule” is then used, which is the observation
that positively charged residues are more abundant
at the cytoplasmic membrane side (von Heijne,
1992). Overall protein topology is not predicted in
this work.

The purpose of this study is to illustrate the ad-
vantage of using preference functions for predicting
sequence position of membrane-buried helices. The
preference function method (Jureti¢ et al., 1993) can
predict not only sequence location, but also the sec-
ondary structure conformation of membrane-buried
polypeptide segments. It associates sequence hydro-
phobicity with statistical propensities for confor-
mational motifs. The essential step in the prediction
process is the comparison of preferences for a-helix,
B-sheet, turn and undefined conformation for each
residue in a sequence. Soluble f-class proteins are
used to train the algorithm to predict B-sheets,
while membrane proteins are used to train the al-
gorithm to predict membrane-buried helices. Of all
the predicted membrane-buried helices, some are as-
sociated with a high enough preference peak and
large enough peak width to be selected as potential
membrane-spanning helices. Other predicted mem-
brane-buried helices are not membrane-spanning.
Some are associated with pore-forming P-segments
in voltage-gated ion channels (Catterall, 1995). The
prediction accuracy for transmembrane helices is su-
perior to different versions of hydrophobicity analy-
sis. Similar results in predicting sequence location
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of transmembrane segments are obtained as with
the neural network and pattern recognition methods
without the need to use homologous sequences.
Homologous sequences are very often missing for
new sequences that are appearing daily from differ-
ent genome projects (Grey, 1996).

2. MATERIALS AND METHODS

2.1. Amino Acid Attributes and Sequence Environ-
environment

Each amino acid from the protein data set was
associated with its type, its known or expected sec-
ondary structure conformation and with average
hydrophobicity (sequence environment) of its five
left and five right sequence neighbors. The hydro-
phobicity of the central amino acid in the sliding
window was not included for the calculation of its
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Fig. 1. The flow diagram for the PREF-SPLIT suite of al-
gorithms. The input for the training procedure is a chosen
scale of amino acid attributes and a protein data set with
assigned primary and secondary structure conformation of
each residue. The file with the class limits for collected
sequence environments is the output of the algorithm DIS.
The PREF algorithm than produces: (a) histograms of en-
vironments for each amino acid and each secondary struc-
ture (frequency distributions); (b) preference points; and
(c) the file with Gaussian parameters such as Table 1. To
examine the protein of unknown secondary structure, its
sequence is presented to the predictor (SPLIT) taking care
that the same scale of amino acid attributes is the input as
previously during the training procedure. SPLIT makes its
own choice of decision constants if given such freedom. Its
filter in the digital predictor splits long predicted helices in
two or three transmembrane helical segments (TMH) each
having around 20 residues. The output of SPLIT are also
numerous performance parameters that are meaningful
when tested sequences have a known secondary structure.
Preference, hydrophobicity and hydrophobic moment pro-
files are all included in the output file.
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sequence environment. During the training process,
the sliding window algorithm, named PREF, col-
lected sequence environments of all amino acids
from 172 polypeptides. In the standard procedure,
the Kyte-Doolittle hydropathy scale (Kyte and
Doolittle, 1982) was used. Other amino acid attri-
butes can be used too among 88 different scales of
physical, chemical, biological or mathematical par-
ameters available in the algorithm. To calculate
sequence environments, the chosen amino acid scale
was normalized with an average of zero and stan-
dard deviation of one. All sequence environments
were grouped into nine classes. The data file with
class limits was created by our fast iterative algor-
ithm (named DIS in the flowchart of Fig. 1) that
grouped approximately equal number of environ-
ments into each class.

2.2. Protein Databases

The training database consisted of 37 soluble §-
class proteins of known crystal structures and 135
integral membrane proteins. Kabsch and Sander’s
(1983) assignments of secondary structures were
used for soluble proteins. We utilized the four-state
model with o-helix (“H”"), S-sheet (“B”), turn (“T")
and undefined (“U”) secondary structure. Soluble
proteins have been selected from the Protein Data
Bank among f-class proteins known with equal or
better than 3 A resolution. When more than one
chain was present in the protein, only the first poly-
peptide chain denoted with the last letter “1” has
been selected. Their PDB codes are: lacx, 1bbpl,
lcd4, 1fdll, lhnel, lmcpl, lpaz, lpfc, 1rbp, lrei,
Isgt, ltonl, 1trml, 2alp, 2apr, 2azal, 2fb41, 2fbjl,
2gchl, 2cna, 2ger, 2ilb, 2ltn, 2Zpcy, 2pkal, 2ptn,
2rhe, 2rspl, 2sga, 2sodl, 2tbvl, 3est, 3rp2, 3sgbl,
4ape, 4cmsl, Spep.

The protein data set of 63 integral membrane
proteins, with known sequence position of trans-
membrane helices, common to us, Rost ef al. (1995)
and Jones er al. (1994), was used to improve the
predictor’s performance. Swiss-Prot codes for
selected proteins are enclosed here. The letter “s”
was added when appropriate to show that signal
sequence  has  been removed:  4f2_human,
5ht3_mouse(s), alaa_human, a2aa_human,
a4 _human(s), aalr_canfa, aa2a_canfa, adt_ricpr,
bach_halhm, bacr_halha, cb21_pea, cek2_chick(s),
cyoa_ecoli(s), cyob_ecoli, cyoc_ecoli, cyod_ecoli,
cyoe ecoli, edgl_human, fce2_human, glp_pig,
glpa_human(s), glpc_human, glra_rat(s), gmer_hu-
man(s), gplb_human(s), gpt_crilo, hema_cdvo,
hema_measa, hema pidma, hg2a human,
iggb_strsp, il2a_human(s), i2b_human(s), ita5_-
mouse, lacy_ecoli, lech_human, leci_mouse, lep_e-
coli, magl_mouse(s), malf_ecoli, motb_ecoli,
mprd_human(s), myp0_human(s), nep_human,
ngfr_human(s), oppb_salty, oppc_salty, opsl_calvi,
ops2_drome, ops3_drome, ops4_drome, opsb_hu-
man, opsd_human, opsg human, opsr_human,
pigr_human, ptma_ecoli, sece_ecoli, tcbl_rabit,
trbm_human(s), trsr_human, vmt2_laann,
vnb_inbbe.

Another database of 105 integral membrane pro-
teins was selected by us among 4000 such proteins

in the Swiss—Prot data base releases 29 and 31
(Bairoch and Boeckmann, 1994). Each of 105 pro-
teins was less than 30% homologous to other pro-
teins from that data set and to all proteins from the
63-protein data set. Swiss-Prot codes for 105
selected proteins are listed below. Appropriate
release numbers and the letter “‘s” (indicating that
signal sequence has been removed) are in parenth-
eses: achl_xenla(29s), acm5_human(29),
adt2_yeast(29), ag22 mouse(29), aqpl_human(29),
athb_rat(29),  athp neucr(29), atml_yeast(31),
atnl_human(29), atp9_wheat(29), atpl_ecoli(31),
b3at_human(29), ¢561_bovin(29), cadn_mouse(29s),
carl_diedi(29), cb2r_human(29), cd2_human(29s),
cd7_human(29s), ¢d72_human(29), cd8a_hu-
man(29s), cgee _bovin(29), cicl_cypca(29), cikl_-
drome(29), cox2_parli(29), cox9_yeast(29),
cpSa_cantr(29), cxb5_rat(29), cyda_ecoli(29),
cydb_ecoli(29), cyf brara(29), dhg_ecoli(31),
dhsc_bacsu(29), divb_bacsu(29), dmsc_ecoli(29),
dsbb_ecoli(31), egf_mouse(31), exbb_ecoli(29),
fix]_rhime(29), fmlr_rabit(29), frdd_provu(29),
ftsl_ecoli(29), ftsh_ecoli(29), furi_human(29s),
g2If human(29), gaal_bovin(29), gasr_human(29),
gesr_human(31s), ghr_human(29s), grhr_human(29),
ha21_human(29s), hb23_mouse(29), hly4_ecoli(29),
hmdh_human(29), imma_citfr(29), isp6_yeast(29),
itbl_human(29s), kdgl ecoli(31), kgtp_ecoli(29),
lhal _rhosh(29), 1hb4 rhopa(29), ly49_mouse(29),
m49 strpy(29s), malg_ecoli(29), mas6_yeast(31),
mdr3_human(31), melb_ecoli(29), mepa_mouse(31s),
mota_ecoli(29), mpcp_rat(29), mypr_human(29),
nals_bovin(29), nkl1_mouse(29), nntm_bovin(31),
nram_iabda(29), ochl_yeast(29), oec6_spiol(29),
psaa_pinth(31), psab_pinth(31), psbi_horvu(29},
ptgb_ecoli(31), secy_ecoli(29), spc2_canfa(29), spir_-
spime(29), stub_drome(29), sy65_drome(29), sybl_-
human(29), synp_rat(29), talo_human(29),
tapa_human(29), tat2_yeast(31), tca_human(29),
tccl_mouse(29), tcrb_bacsu(31), tee6_strpy(29s),
tgfa_human(31s), thas_human(29), tnfa_bovin(29),
tnrl_human(31), tsad_giala(31s), ucp_rat(29),
va34_vaccc(29), veal_human(29s), vglg hrsva(29),
vs1Q_rotbn(29), wapa_strmu(29s).

We used 5-times cross-validation to obtain repre-
sentative results for the total set of 63 + 105 = 168
integral membrane proteins. Each tested group (33
or 34 proteins) had a similar distribution with
respect to the number of transmembrane segments.

The set of 135 membrane proteins, used in the
standard training procedure, is obtained when the
following 33 proteins are removed from the total
set of 168 proteins: ¢d72, cd7, cd8a, cek2, cpSa, egf,
veal, val4d, tsad, trsr, trbm, ghr, glp, glpa, glpc,
gmer, gplb, atpl, exbb, cxb5, dsbb, atml, bach,
carl, cb2r, cyda, edgl, fmlr, opsb, athp, gpt, b3at,
tat2.

All membrane proteins were of the o-class with
approximately known sequence position of mem-
brane-spanning helices. Therefore, only a-helix (for
membrane-spanning helix), turn (for four residues
next to each helix cap) and undefined (for all
remaining residues) conformation were assigned to
these proteins.

The reference set of 21 integral membrane poly-
peptides with known sequence location of trans-
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Table 1. Gaussian parameters as the input file* for the SPLIT al-

gorithm

4.7798
1324 0.6363 0.2986
278 0.6299 0.3108
1938 0.6271 0.2966
450 0.6058 0.2892
111 0.4364 0.3981
144 0.5298 0.3563
156 0.5660 0.2800
99 0.4406 0.3633
1391 0.6415 0.2954
1377 0.6189 0.3001
1080 0.6054 0.3117
472 0.5546 0.3007
283 0.5767 0.3118
600 0.6719 0.2761
974 0.6679 0.2729
707 0.6297 0.3101
119 0.5074 0.3866
229 0.5691 0.3295
346 0.6289 0.3186
75 0.5072 0.3592

19.6912
184 0.1749 0.2724
78 0.0945 0.2995
276 0.0619 0.2791
50 0.1286 0.2349
85 0.1389 0.2802
124 0.1610 0.2639
53 0.1585 0.2439
112 0.1394 0.2724
339 0.0871 0.2582
208 0.0482 0.2781
178 0.1079 0.2978
160 0.0446 0.2764
64 0.1016 0.2827
270 0.1736 0.2759
194 0.1664 0.2828
265 0.1631 0.2749
85 0.2009 0.3334
96 0.2429 0.2808
47 0.2091 0.2277
82 0.2239 0.3199

. 7.2830
550 0.1724 0.3036
124 0.1235 0.3083
517 0.1327 0.3182
142 0.1925 0.3310
360 0.1949 0.3386
317 0.1668 0.3243
176 0.1876 0.3322
512 0.1817 0.3349
389 0.0973 0.3104
283 0.0980 0.3136
301 0.1346 0.3299
277 0.1658 0.2993
142 0.1740 0.3455
L18| 0.1622 0.3197
758 0.1783 0.3034
701 0.1735 0.3241
451 0.1881 0.3324
458 0.1900 0.3425
471 0.1691 0.3166
533 0.2248 0.3486

1.6591
2441 0.0193 0.3086
676 —0.0196 0.3005
2948 —-0.0323 0.3005
688 0.0£66 0.3167
2393 0.0052 0.3151
1578 0.0025 0.3096
763 0.0353 0.3094
2090 —0.0023 0.3216
2106 —0.0038 0.3020
1701 -0.0089 0.2889
1241 -0.0141 0.2959
1048 0.0090 0.3007
544 -0.0398 0.2924
2281 0.0243 0.3126
2411 0.0450 0.3139
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2639 0.0210 0.3088
1907 0.0305 0.3206
1677 0.0591 0.3180
2065 0.0097 0.3235
1816 0.0226 0.3128

*The training with the PREF algorithm produces different num-
bers in the input file for each choice of hydrophobicity scale
and protein database. Presented input file, used in this paper,
has been created with the Kyte-Doolittle hydropathy values
and protein database consisting of 135 integral membrane pro-
teins and 37 f-class soluble proteins. The number of amino
acid residues (the first column), average sequence environment
(the second column) and sample standard deviation of
sequence environments (the third column) are listed in the for-
mat ready to be used by the SPLIT algorithm. Four blocks of
20 values are respectively for the a-helix, f-sheet, turn and
undefined conformation. Numbers before each block represent
the inverse value of the fraction of corresponding secondary
structure conformation in the protein data set. Twenty amino
acid types in each block are listed in the order: Ala, Cys, Leu,
Met, Glu, Gin, His, Lys, Val, Ile, Phe, Tyr, Trp, Thr, Gly,
Ser, Asp, Asn, Pro, and Arg.

membrane helical segments was collected from
high-resolution membrane-protein structures deter-
mined by X-ray diffraction. It consisted of photo-
synthetic reaction center subunits H, L and M from
Rhodobacter viridis (Deisenhofer ez al., 1985, 1995)
and Rhodobacter sphaeroides (Allen et al., 1987),
plant light-harvesting complex LHC-IIT (Kiihlbrandt
et al., 1994), light-harvesting protein LHA2 from
Rhodopseudomonas acidophila (McDermott et al.,
1995), subunits I, IT and III of cytochrome ¢ oxi-
dase from Paracoccus denitrificans (Iwata et al.,
1995), and subunits 1, II, III, IV, VIa, Vic, VIla,
VIIb, VIIc and VIII of cytochrome c oxidase from
bovine heart (Tsukihara et al., 1996). These proteins
were not included in the training data set of pro-
teins.

2.3. Gaussian Parameters, Preferences and Prefer-
preference Functions

The PREF algorithm (see the flowchart in Fig. 1)
collected histograms of sequence environments for
each amino acid type in each of four considered
secondary conformations. For each histogram,
three Gaussian parameters were extracted: (a) num-
ber of sequence environments, (b) average value for
sequence environments, and (c) standard deviation
for sequence environments. All such parameters
were collected from the training data set of 172 pro-
teins in the output file (Table 1). Different Gaussian
parameters were collected in the case when 63 mem-
brane proteins (already used to improve the algor-
ithm) were tested for prediction accuracy. These
new parameters were extracted from the same set of
37 soluble proteins plus an independent set of 105
membrane proteins.

Gaussian parameters were used by the SPLIT al-
gorithm to replace frequency distributions of en-
vironments X with corresponding Gaussian
functions. The probability p; of finding amino acid
type “”” in a particular conformation ““; within en-
vironment X, was defined as the ratio of the
Gaussian function Gi(X) to the sum of Gaussian
functions for amino acid type “/” in a-helix, g-
strand, turn and undefined conformation:
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py(X) =

(Ny/oy) expl—(X — u;)?/20%] &
1
Z(Nu/ow) exp[—(X _#ik)2/2a?k] ; M

The number of amino acids found in each confor-
mation (Ny), average (u;) and sample standard de-
viation (o) of parameters X are listed in Table 1.
Preference functions are obtained as

Py(X) = py(X') - (N/N)) @

%1

where N/N is the fraction of conformation “/” in
the protein data set. Preference functions were then
utilized by the SPLIT algorithm to evaluate confor-
mational preferences for amino acid residues in a
tested protein.

For comparison, nine preference points, £k = 1
,...,» 9 were calculated as

Py = (Nj/Ni) - (N/N;) (3)

where Ny is the total number of environments “k”
belonging to amino acid “/”, while N are only
those of these environments that are associated with

«ms

the conformation ““;”.

2.4. DC Censtants, Smoothing and Filtering Pro-
procedure

The preliminary prediction results for tested pro-
tein were used in the next prediction loop for the
determination of decision constants for helix (dch),
sheet (dce) and coil (turn and undefined)(dce) con-
formation. There were three “if-loops” in the algor-
ithm that could produce decision constants different
from zero: dch = 0.3, dce = —0.6 and dcc =0
were chosen when the predicted helical confor-
mation was greater than 30% and the percentage of
charged amino acids less than 20%; dch = —0.2,
dce = 0.4 and dcc = 0 were chosen when the per-
centage of predicted sheet conformation was higher
than 25% and the percentage of helical confor-
mation less than 15%; dch = 0.4, dce = — 0.2 and
dec = 0.0 were chosen when predicted helical con-
formation was higher than 25%, protein longer
than 300 amino acids and predicted number of
transmembrane helices higher than six. Except in
explicitly stated cases the algorithm was used with
all decision constants equal to zero.

Preferences were smoothed. Seven residue prefer-
ences were smoothed for the “H” conformation,
five for the “B” conformation and three for the
“U” or “T” conformation. The smoothed value
was assigned to the residue in the middle of the
sliding window. Corresponding decision constants
were added to strings of smoothed preference
values. Numerical values for smoothed preferences
for four conformational states were then compared
and a secondary structure assigned to the highest
preference. Reported preferences are the smoothed
values.

In the standard training and testing procedure,
the Kyte-Doolittle hydropathy scale was used to
calculate sequence environments and to evaluate
preference functions. One example of the predictor
output (for melittin) is given in Table 2. To test the
prediction accuracy for transmembrane helices it
was essential to incorporate digital predictor and fil-
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ter in the SPLIT algorithm. The main part of the
filter was designed to distinguish among normal-
length transmembrane helices, short transmembrane
helices and membrane-buried helices. Only pre-
dicted transmembrane helices were used in predic-
tion accuracy estimates. Short segments of less than
17 residues predicted in the «-helix conformation
were rejected as potential transmembrane helices
(but not as membrane-buried helices) if (a) corre-
sponding preference peaks did not reach the
threshold height of 2.7, or (b) they were found to
have more than three charged residues or prolines.
Other short segments having 13-16 residues pre-
dicted in the o-helix conformation with the a-helix
preference peak higher than 2.7 were labeled as
short membrane-spanning helices. Predicted helices
longer than 27 residues were shortened or split into
two or three shorter segments depending on their
length and predicted maximums in a-helix and turn
preference profiles.

Three subroutines were used to split and/or to
shorten a predicted long helix. The TURN-BREAK
subroutine used maximal turn preference higher
than 1.0 to shorten TMH longer than 28 residues
or to split TMH longer than 35 residues. The
CHARGE-BREAK subroutine examined the first
four and last four residues of the putative trans-
membrane segment for the presence of charged resi-
dues and shifted the position of helix caps in the
direction of helix middle if turn preferences were
greater than 1.0. The FILTER subroutine also cre-
ated new helix caps closer to the middle of TMH so
that the shift in new cap positions was greater for
lower o-helix preference and for longer initially pre-
dicted TMH. Helical preference was multiplied by
the number of residues reached from the cap resi-
due position and the resulting value was compared
with (TMH length — 21)/2.

2.5. Performance Measures

The performance parameters for judging the pre-
diction accuracy allowed for overpredictions o and
underpredictions ». One such parameter utilized for
individual residues is A;={(No~u)/N;
(Ponnuswamy and Gromiha, 1993), where / is the
index of chosen secondary conformation (i = TM,
when transmembrane helix conformation is exam-
ined). There are N, residues from the protein data
base found in the conformation *“i”, while o; and u;
residues are respectively overpredicted and under-
predicted in that conformation. The 4 parameter
can be a large negative number for poor prediction.
The same parameter can be used to measure the
prediction accuracy for transmembrane segments:
A;=(Ns—o0s—u,)/Ns where s denotes the transmem-
brane segment. There are N, observed transmem-
brane segments, wu; underpredicted and o
overpredicted segments. The simpler performance
measure is the fraction of correctly predicted trans-
membrane helices: Qg= N/N,, where N is the
number of correctly predicted membrane-spanning
helices. An overlap of at least nine common resi-
dues in the transmembrane helix conformation was
required between predicted and observed helices for
the case of correctly predicted transmembrane helix



Juretic et al.

Table 2. The output file for melittin*

Melittin, 2 mlt1-sec, 26 amino acids

Preferences Moments KD profile
No. “AA” “08” “PS"  “TMH” “BET” “TUR™ “UND” “H-T” “MOMA”“MOMB” “SW7” “SW|9"
1 G 8] o} 4.09 0.19 0.42 0.13 367 0.00 0.00 0.00 0.00
2 I H 0 2.98 0.69 0.48 0.46 2.51 0.00 0.00 0.00 0.00
3 G H (6] 3.30 0.57 0.57 0.52 2.73 1.61 0.85 0.00 0.00
4 A H 0 3.07 0.61 0.38 0.16 2.69 1.97 0.88 1.37 0.00
5 \% H o 2.96 0.34 0.47 0.22 2.49 2.06 0.83 2.03 0.00
6 L H 0 3.38 0.48 1.14 0.30 2.24 1.89 0.63 1.93 0.00
7 K H (6] 3.16 0.47 1.23 0.37 1.93 1.89 0.63 1.89 0.00
8 v H (0] 3.10 0.63 1.27 0.40 1.83 1.86 0.77 1.53 0.00
9 L H 0 2.95 0.76 0.65 0.34 2.29 2.03 0.98 0.87 0.00
10 T H (o] 2.98 0.76 0.79 0.36 2.19 2.03 0.98 0.87 1.39
11 T T (6] 3.10 0.66 0.87 0.35 2.23 2.18 0.96 1.20 1.65
12 G H O 3.04 0.60 0.72 0.29 2.32 2.00 0.80 0.86 1.21
13 L H (¢] 2.89 0.55 0.88 0.35 2.01 1.78 0.68 0.86 0.99
14 P H o} 2.65 0.53 0.87 0.38 1.78 1.88 0.72 1.60 0.69
15 A H (e} 2.33 0.75 1.01 0.53 1.32 1.80 0.77 1.59 0.23
16 L H M 1.92 1.04 0.82 0.64 109 1.89 0.89 1.51 -0.15
17 I H M 1.36 1.32 1.04 0.83 0.32 1.61 1.18 1.61 —0.13
18 N H M 1.06 1.50 1.10 1.02 —0.04 1.43 1.45 1.29 0.00
19 w H E 0.65 1.44 1.07 1.16 —0.42 1.07 1.06 0.39 0.00
20 1 H E 0.33 117 0.90 1.29 —0.57 116 1.05 —0.71 0.00
21 K H U 0.15 0.85 0.81 1.39 —0.66 1.28 0.97 —2.00 0.00
22 R H U 0.07 0.54 0.75 1.45 ~0.69 0.82 1.37 —2.39 0.00
23 K H E 0.02 0.22 0.69 1.49 —0.67 1.02 1.89 —2.76 0.00
24 R H 8] 0.01 0.08 0.55 1.52 —0.55 0.82 1.28 0.00 0.00
25 Q H U 0.00 0.03 0.50 1.54 —0.49 0.00 0.00 0.00 0.00
26 Q U U 0.01 0.01 0.35 1.58 —0.34 0.00 0.00 0.00 0.00

*A one letter amino acid code is used in the second column (AA). Observed structure (OS) is in the third column. Predicted structure

(PS) in the fourth column is transmembrane helix configuration labeled with the letter **M" except for highly probable transmem-
brane helix (TMH) conformation when the letter “0” is used. Conformations “T" and *‘H” (membrane-buried a-helix not predicted
as the part of membrane-spanning helix) are not predicted here. Predicted motif “U” refers to undefined conformation. Residues with
the predicted sum of S-preferences (BET) and f-moments (MOMB) higher than 2.0 are labeled with the letter “E”. Not-normalized
PRIFT scale (Cornette ez al., 1987) (input code 27) was used here to calculate hydrophobic moments (Eisenberg er al., 1984), while
Kyte-Doolittle hydrophobicity scale (1982) was used to calculate preferences. Columns 5-8 contain smoothed preferences for a-helix
(TMH), f-sheet (BET), turn (TUR) and undefined (UND) conformation. Column 9 contains TMH-TUR difference of preferences
(H-T) that helps in visual identification of predicted transmembrane helices. Columns 10 and 11 contain numerical values for hydro-
phobic moments for assumed o-helix (MOMA) and for assumed f-sheet conformation (MOMB). The last two columns contain slid-
ing window averages of Kyte-Doolittle hydropathy values with short window of 7 residues (SW7) and with wide window of 19
residues (SW19).

segment. The performance measure for whole pro-
teins: Q, =n/n gives the percentage of correctly pre-
dicted proteins out of the total number of n tested
proteins. In the n. proteins all transmembrane
helices are correctly predicted in their sequence pos-
itions. The algorithm also reports the number of:
(a) residues correctly predicted, overpredicted and
underpredicted in the transmembrane helix confor-
mation; (b) transmembrane helical segments pre-
dicted, correctly predicted, overpredicted and
underpredicted; (c¢) proteins recognized as mem-
brane proteins; and (d) proteins recognized with
100% correct transmembrane conformation. Any
number of membrane proteins can be tested at the
same time, because performance parameters are cal-
culated for each individual protein and for all resi-
dues from the protein data set.

We have set up an automatic e-mail server: pre-
dict@drava.etfos.hr, which will return preference
profiles, hydrophobic moment profiles, and hydro-
phobicity profiles of membranc protein when its pri-
mary structure is submitted. FORTRAN source
codes for the PREF-SPLIT suite of algorithms ver-
sion 3.1 and protein data sets used in the training
and testing procedure are also available from the
first author.

3. RESULTS

3.1. Training Procedure Results

A flow diagram for the PREF 3.1 suite of algor-
ithms is presented in Fig. 1. The input for the train-
ing procedure consists of chosen scale of amino
acid attributes and protein data set with assigned
primary and secondary structure conformation of
each residue. The output is the frequency distri-
bution of sequence environments and nine prefer-
ence points calculated from equation (3) for each
amino acid in each secondary conformation.
Another output is the file with Gaussian parameters
such as the Table 1. Normal distributions
(Gaussian functions) are expected to be a good fit
for the histograms of sequence environments due to
the averaging procedure employed. One example is
the histogram and corresponding Gaussian function
for glycine in the w«-helix conformation (Fig. 2).
Preference function for glycine in the a-helix confor-
mation (equation (2)) and observed preference
points (calculated according to equation (3)) are
compared in Fig. 3. Linear approximation for the
dependence of preferences on sequence hydrophobic
environment would be clearly inferior. Preference
functions are a good fit for the observed preference
points for other amino acids too (not shown).
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Fig. 2. The histogram and corresponding Gaussian func-
tion (full line) for glycine in the x-helix conformation. An
average sequence hydrophobic environment on the x-axis
is obtained from the Kyte—Doolittle hydropathy scale
(1982). Sequence environments are extracted from the data
base of 37 soluble and 135 membrane proteins (see
Methods). Frequency points are obtained by grouping the
environments in classes and counting the number of occur-
rences of glycine in the a-helix conformation in each class.
Normal frequency distribution for 974 glycine environ-
ments is determined by their mean: 0.6679, and standard
deviation: 0.2729, as found in the Table 1.

3.2. Prediction Tests
3.2.1. Photosynthetic reaction center

For the photosynthetic reaction center subunits L
and M, all of 10 observed membrane-spanning seg-
ments are predicted by the SPLIT algorithm in
their correct sequence location with no overpre-
dicted segments (Figs 4 and 5, upper part). Out of
252 residues in the transmembrane helix confor-
mation, 191 are correctly predicted in such a con-
formation, 18 are overpredicted and 61 are
underpredicted.

Comparison of our preference profiles with the
Kyte—Doolittle hydrophobicity profiles for the same
reference polypeptides (Fig. 4 and Fig. 5, lower
part) illustrates the advantage of using preferences
(as the difference between helix and turn prefer-
ences) in the upper parts of these figures (Fig. 4 and
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Fig. 3. Preference function and observed preference points
for membrane-buried a-helix conformation of glycine.
Equation (1) and Table | are used to calculate Gaussian
functions as explained in the legend of Fig. 1. The prefer-
ence function (full line) is calculated according to
equation (2). Constant preferences are calculated accord-
ing to equation (3). Error bars are one standard error
above and below preference points. The x-axis description
can be found in the legend of Fig. 2.
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Fig. 5). Resolution of preference peaks is much bet-
ter and there is much less noise. These advantages
become quantitative when digital prediction of heli-
cal membrane-spanning segments (thick line in
Fig. 4 and Fig. 5, upper part) is used. The predic-
tion of helical ends is far from perfect. The SPLIT
algorithm errs on the conservative side: parts of
membrane associated helices are not always recog-
nized as such, but are rarely overpredicted.

Fine details in the preference profile of each peak
are also significant. Minimum associated with the
preference peak of the D transmembrane helix cor-
responds to the Fe ligands His 190 in the subunit L
and His 217 in the subunit M. Minimum at pre-
dicted N-cap of helix E corresponds to the Fe
ligands His 230 in the subunit L and His 264 at the
subunit M (Deisenhofer et al., 1995).

3.2.2. Melittin

The output file for melittin (Table 2) illustrates
what can be obtained (by e-mail) from our predic-
tor. The digital predictor output in column four in-
dicates with letters “O” (stronger preferences) and
“M” (weaker preferences) where a transmembrane
helix is expected to form in the sequence.
Hydrophobicity profiles are also included in the last
two columns. Hydrophobicity moment profiles are
calculated with the less commonly used PRIFT
scale (Cornette ef al., 1987). The combination (sum)
of hydrophobic moments for assumed p-confor-
mation and f-sheet preference can serve as an
empirical parameter for predicting sequence lo-
cation of f-strands buried in the membrane (Jureti¢
et al., 1998). Prediction of membrane-buried p-
strand requires six or more consecutive residues pre-
dicted in the “E” conformation (see the legend of
Table 2), hence melittin is not predicted to form f-
conformation in the membrane. The capabilities of
our predictor to predict membrane-bound S-confor-
mation will be discussed in another paper.

3.2.3. Reference polypeptides of known X-ray crystal
structure

When 21 integral membrane polypeptides of
known crystallographic structure (75 membrane-
spanning helices) are examined with the SPLIT pre-
dictor, only one transmembrane helix was underpre-
dicted and none overpredicted (Table 3). All
polypeptides were predicted as integral membrane
proteins—only one was predicted with a lesser
number of transmembrane helices than observed.
This is a prediction accuracy of 99% (Q,=0.99,
A;=0.99) for transmembrane helices and 95%
(0,=0.95) for polypeptides predicted with correct
transmembrane structure.

Such high prediction accuracy was not retained
for individual residues in observed membrane-span-
ning helix conformation (Table 3). Of 2081 such
residues 1429 were correctly predicted, 652 under-
predicted and 79 overpredicted (Aty =0.649).

With free choice of decision constants (see
Methods) per-residue performance increased to
Arpm=0.668. The single underprediction of
observed transmembrane segments (of the trans-
membrane helix XI in the subunit I of Paracoccus
denitrificans cytochrome ¢ oxidase) was then cor-
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Fig. 4. The conformational index profile for the photosynthetic reaction center L subunit is the prefer-
ence for the transmembrane helix conformation minus preference for the turn conformation. The pre-
ference profile and the digilal prediction (thick line at the 1.0 level) for the membrane-buried «-helix
conformation are obtained with the PREF-SPLIT algorithm. It uses the Kyte-Doolittle scale (1982) of
hydropathy values to calculate preference functions for secondary structure determination. The hatched
boxes correspond to observed membrane-spanning helices A~E of the crystal structure. The hydropho-
bicity profile (lower part of the figure) is obtained by using the Kyte-Doolittle scheme of sliding win-
dow average over 19 ncighboring residues. The membranc-spanning helix is predicted if sliding window
average Hyo> 1.58 (the straight line threshold value) for at least one residue (Jihnig, 1990).

rected. Even without use of decision constants it
was obvious from preference profile that high o-
helix preference peak (with maximum reaching 3.0)
at sequence location 447 to 462 is a good candidate
for transmembrane a-helix.

3.3. Comparison With Other Prediction Methods

We have also compared two recent prediction
methods, that of Jones ef af. (1994) and Rost et al.
(1995) with our own. Features that our predictor
lacks (topology prediction) could not be compared.
For 83 predicted structures by Jones et al. (1994),
we calculated the A and Q,, performance measures:
As=0.928 and Q,=79.5%. For 69 proteins tested
by Rost ef al. (1995), performance parameters were:
A;=0.896 and Q,,=79.7%. The Aty parameter was
0.733, when calculated from predictions returned by
Rost et al’s (1995) automated service for the subset
of 63 proteins (among 69 proteins) used by us also.
These results can be compared with our test of 63
proteins common to us and to Jones et al. (1994)
and Rost er al. (1995). Input Gaussian parameters
were in this case extracted from a different set of
105 membrane proteins and automatic choice of de-
cision constants was allowcd. Performance par-
ameters were: Aty =0.740, Q,=97.9%, A,=0.934
and Q,=84.1%. A similar test on the set of 105
proteins, never before seen in the training process
for the neural network algorithm, gave a value of

Arm=0.610 for Rost et al’s (1995) method. For
these  proteins we  obtained Ay =0.682,
Q.=94.7%, A;=0.885 and 0,=75.2% with free
choice of decision constants. When all of 168 inte-
gral membrane proteins were tested by using the 5-
times cross validation procedure, we obtained (also

with automatic choice of decision constants)
At =0.712, 0,=95.3%, A;=0.898 and
0p=774%.

3.4. Choice Of Filter Parameters, Hydrophobicity
Scales And Decision Constants

How do different subroutines and the choice of
filter and input parameters in the SPLIT algorithm
influence the prediction performance? Careful selec-
tion of performance paramcters and tests with as
large a number as possible of non-homologous inte-
gral membrane proteins is important in answering
this question. A commonly reported Qg parameter
(the percentage of correctly predicted transmem-
brane helices) is not sensitive to overprediction of
individual residues in the TMH conformation.
Table 4 reports only Aty and Qp parameters (see
Methods). Tests were carried out on the data set of
168 proteins (63 + 105). Their Swiss-Prot codes are
also given in the Methods section. The smoothing
procedure and filter significantly improve the per-
formance, while choice of decision constants differ-
ent from zero is less important. Listed
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Fig. 5. Predicted and observed membrane-spanning segments for the photosynthetic reaction center M
subunit. All labels and procedures used are the same as in Fig. 4.

hydrophobicity scales are well known scales that
performed among the top 10 as judged by the Aty
parameter. More detailed evaluation of hydrophobi-
city scales and optimal sliding window length can
be found in our earlier work (Jureti¢ et al., 1998).

3.5. Voltage-gated Channels And Receptors

3.5.1. The Shaker potassium channel

Our prediction (Fig. 6) for the Shaker potassium
channel is that it has five transmembrane helices
and three possible membrane-buried helices (at the
polypeptide N-terminal “*ball” region and at the N-
terminal of S4 and P segments). Turn preferences
(the difference between dotted and full line) are
very close to zero at the maximums for five pre-
dicted transmembrane helices. Three potential mem-
brane buried-helices are too short to span 3 nm of
membrane lipid interior. According to prediction
rules described in “Methods” these segments are
not predicted (the digital predictor output is seen as
the thick line in Fig. 6) as potential short trans-
membrane helices. For sequence positions associ-
ated with S4 and P-segments, residues with
maximal preference for helical conformation have
significant potential for the turn conformation as
well.

The P-segment residues from Drosophila Shaker
are: PDAFWWAVVTM(440)TTVGYGDMTP. The
middle of the P-segment is thought to be closc to
methionine 440 (Kiirz er al.. 1995). Maximal prefer-
ence for membrane-buried z-helix is found at the
alanine 436. For the S4 segment of Shaker (resi-
dues:
MSLAILRVIRLVR(368)VFRIFKLSRHSKG)
maximal helix preference is also at the N-terminal

of that segment at arginine 362. The middle pos-
ition of that segment is closer to arginine 368
(Larsson et al., 1996).

3.5.2. Ionotropic glutamate receptors

We predict three membrane-spanning helices for
such receptors. Of several potential membrane-bur-
ied short helices seen in preference profiles of these
proteins one is at the N-terminal part of the pro-
posed P-segment. Only recently it was realized that
three transmembrane helices and a P-segment is the
most likely transmembrane structure of GluR pro-
teins (Hollman et al., 1994; Bennett and Dingledine,
1995). Figure 7 shows the prediction for transmem-
brane helices as well as the preference and hydro-
phobicity profile of the GIuR-5. The middle
position of the P-segment is thought to be at the

phenylalanine 598 of rat GluR-1 (residues:
FNSLWFSLGAF(598)MQQGCDISPR) and at the
leucine 634 of rat  GIuR-5  (residues:

LNSFWFGVGAL(634)MQQGSELMPK) (Wo and
Oswald, 1995a; Sutcliffe er al., 1996). Maximal pre-
ference for membrane-buried helical conformation
inside the P-segment is found at the Phe-629 of
GluR-5, and at the Phe-593 of GluR-1.

3.6. Different Hydrophobicity Scale Predicts Same
Conformational Motifs

The correlation coefficient between some hydro-
phobicity scales is not very high. For instance, the
mean fractional area loss of Rose et al. (1985) and
the Kyte—Doolittle hydrophobicity scale (1982) has
a correlation coefficient of 0.84. To answer the
question if the choice of different amino acid attri-
butes predicts different conformational motifs, we
used Rose’s hydrophobicity scale in the PREF-
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Table 3. Predicted and observed transmembrane helices (TMH)

TMH** predicted TMH observed ~ Max TMH preference Max TMH sequence

Protein* no.
PRCH_VIR 16-31 Short 12-35 4.04 26
PRCH_SPH 11-31 12-37 4.29 23
PRCL_VIR 2650 33 53 4.67 41
85-101 Short 84-111 4.11 94
114-134 116-139 4.56 125
176 197 171-198 3.83 182
232-250 226-249 343 239
PRCL_SPH 30-53 32-55 4.65 46
85-101 Short 83-111 3.67 94
116-135 116-138 4.57 126
173-196 171-198 3.85 191
232-255 225-250 4.48 224
PRCM_VIR 5074 52-76 4.54 68
113-127 Short 111-137 3.54 118
143-165 143-166 4.67 155
204-225 198-223 3.54 217
269 288 260-284 4.32 277
PRCM_SPH 50-73 54 .78 396 58
113-129 Short 109-139 442 120
148-163 Short 147-168 424 156
203-226 200-226 3.93 2n
268-290 262-286 4.22 276
LHA2 12-36 11 36 4.47 27
LHC-II 46-60 Short 30-64 3.70 53
95-113 98-118 3.75 106
162- 176 Short 145-174 392 169
CX1_PDE 32-52 27-59 4.52 44
91-112 84-121 4.59 103
136-151 Short 130-151 4.34 144
181-204 178-206 3.70 198
219-244 218-251 4.53 232
279-297 263-298 4.19 286
303-326 304-322 4.61 316
340-363 334-362 3.50 345
373-394 370-395 444 380
411-432 404-430 4.31 422
Underp. 441-468 298 455
491-512 483-513 4.62 505
CX2 _PDE 36-58 27-59 4.75 52
78-101 74-105 4.71 89
CX3_PDE 14-33 15-35 4.34 25
39-65 48-76 4.58 56
85-108 79-114 4.12 96
140-161 139-165 447 148
173-187 Short 168-196 4.66 180
205230 203-236 4.66 228
253-270 244-273 4.68 264
COX1_BOvV 17-37 12-40 3.66 22
57-79 51-86 4.60 68
104-119 Short 95-117 4.08 111
145-168 141-170 371 161
184-208 183-212 4.66 196
242-257 Short 228 261 3.87 249
271293 270-286 4.18 281
307-326 299-327 3.67 313
339-361 336-357 4.51 345
376-398 371-400 4.28 387
410426 Short 407-433 4.05 418
456-473 447-478 4.61 467
COX2_BOV 27-47 15-45 4.64 35
64-81 60-87 4.73 73
COX3_BOV 19-33 Short 16-34 349 24
36-52 Short 41--66 340 45
81-102 73-105 4.22 89
130-145 Short 129-152 3.47 139
161-176 Short 156-183 4.24 167
195-219 191 223 4.34 213
242-258 Short 233-256 4.17 250
COX4_BOV 82-98 Short 77-103 4.47 90
COX6a_BOV 19-33 Short 13-37 392 26
COX6c_BOV 20-35 Short 12-52 4.06 27
COX7a_BOV 34-49 Short 26-54 2.88 42
COX7b_BOV 18-35 9-35 4.07 26
COX7¢_BOV 22-40 18-44 3.75 27
COX8_BOV 18-34 Short 12-35 4.10 24

*PRC H, L and M are respective subunits of the photosynthetic reaction center from Rhodobacter viridis (VIR) and from Rhodobacter
sphaeroides (SPH). LHA2 and LHC-II are the light-harvesting protein from Rhodopseudomonas acidophila and plant light-harvesting
protein respectively. CX1. 2 and 3 are subunits I, I1 and I of the cytochrome ¢ oxidase from Paracoccus denitrificans (PDE). COX
polypeptides are subunits I, I1. 111, IV, VIa, VIc, Vlla, VIIc and VIII of the cytochrome ¢ oxidase from bovine heart.

**Decision constants were not used (all were equal to zero). When automatic choice of decision constants is allowed prediction accuracy
increases and observed TMH 441-468 from cx1_pde is no longer underpredicted.
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Table 4. The dependence of the algorithm’s performance on the choice of subroutines and input parameters

Choice* 1 2 3 4 6 7 8 9 10
Atwm 0.712 0.655 0.693 0.646 0.689 0.694 0.680 0.675 0.666 0.659
0O, (%) 77 64 68 58 59 69 68 63 65

*The effect of each change was separately tested. Tests were always performed on 168 nonhomologous membrane proteins. The choice of
parameters and procedures is as follows. 1: The best parameters and complete algorithm with the Kyte~Doolittle hydropathy values
(1982) as the input (input code 1). 2: The filter omitted (all filter subroutines omitted). 3: Decision constants all set to zero. 4:
Smoothing procedure omitted. 5: Sliding window shorter (7 residues). 6: Sliding window longer (15 residues). 7: Surrounding hydro-
phobicity scale of Ponnuswamy and Gromiha (1993) (input code 17). 8: Consensus hydrophobicity scale of Eisenberg ef al. (1984)
(input code 26). 9: Mean fractional area loss of Rose er al. (1985) (input code 30). 10: Hydropathy values of Engelman et al. (1986)

(input code 4).

SPLIT procedure for calculating preference func-
tions. It is seen from Fig. 8 that the all important
conformational motifs in the Shaker sequence are
predicted with Rose’s scale as well.

4. DISCUSSION

4.1. High Accuracy In Predicting Transmembrane
Helices With Preference Functions

The ratio of Gaussians, as probability to find a
conformational motif, can be very successful in
detecting such motifs (Lupas ez al., 1991). The ratio
of probabilities as preference for the formation of
an «-helix conformation is strongly dependent on
sequence hydrophobic environment (Fig. 3). The

preference functions method (Jureti¢ et al., 1993)
calculates conformational probabilities and prefer-
ences as functions of local sequence hydrophobicity.
Secondary structure (a-helix, p-strand, turn and
undefined) is predicted after comparing preferences
for each residue. For many integral membrane pro-
teins the visual comparison of helix and helix minus
turn preference profiles is enough to show correct
sequence location of membrane-spanning and mem-
brane-buried helices. High a-helix preference peaks
(Figs 4-8) are easily resolved by a simple digital
predictor with few filtering rules, which calculates
performance parameters when known structures are
analyzed.

Tests with known crystal structures identified cor-
rect sequence position and conformation of all but
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Fig. 6. Predicted a-helix membrane conformation of the Drosophila Shaker voltage-gated potassium
channel. Dotted line: helix preferences; full thin line: helix—turn preferences; full thick line at the level
1.0: digital prediction for transmembrane a-helix conformation. Stable transmembrane helices are S1,
$2, 83, S5 and S6. Maximums in the preference for membrane-buried «-helix conformation next to
labels S4 and P correspond to N-terminal parts of unstable (movable) voltage sensor S4 segment and
pore wall P-segment, respectively. The primary structure of the P-segment extends from D431 to P450,
while that of the S4 segment extends from M356 to G381. The “ball” part of the chain and ball inacti-
vation mechanism at the polypeptide N-terminal (Amstrong, 1992) is also associated with high prefer-
ence for membrane-buried o-helix conformation.
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Rat glutamate receptor Glur-5 (kainate receptor)
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Fig. 7. Hydrophobicity profile and predicted membrane-associated secondary conformation of the rat
ionotropic glutamate receptor GluR-5 (kainate receptor). All lines have the same labels and meaning as
described in the legend of Figs 4 and 6.

one of 75 transmembrane segments. Importantly,
this was done without overpredicting transmem-
brane segments. Known structures of tested pro-

teins were not included among proteins in the
training process, because tested proteins should be
“never before seen” by the predictor. -
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Fig. 8. Predicted membrane-spanning and membrane-buried helices in Droshophila Shaker channel
when preference functions are derived with the Rose hydrophobicity scale (Rose et al., 1985) of frac-
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Per-residue prediction accuracy is such that
underpredictions dominate for known crystal struc-
tures. The crystal structures of cytochrome ¢ oxi-
dase and photosynthetic reaction center are biased
samples of integral membrane proteins. These pro-
teins have many cofactors that influence the pro-
pensity (probably by increasing it) for the «-helix
transmembrane structure. This feature was not
taken into account by our predictor, which pre-
dicted a total of 23 short membrane-spanning
helices at sequence locations with observed trans-
membrane helices longer than 20 and sometimes
even longer than 30 residues (Table 3). Another
reason for underpredictions is the optimization of
the method for predicting membrane-buried parts
of long membrane-spanning helices. In fact, pre-
dicted “‘short transmembrane helix” is usually just
the membrane anchoring part of normal-length
membrane-spanning helix that reserves a part of its
length for the interaction with less hydrophobic
protein structures. Per-residue prediction accuracy
increased and predicted number of short mem-
brane-spanning helices decreased to 15, when auto-
matic choice of decision constants (see Methods)
was allowed.

Reported test results were achieved by using only
single sequence information. The knowledge about
expected structure of homologous proteins to the
tested one (evolutionary information) was not used.
Positive-inside rule (von Heijne, 1992, 1995) and
comparison of possible topological models accord-
ing to this rule (Sipos and von Heijne, 1993) were
not used. Per-residue prediction accuracy increased
to Atm =0.712 when expected sequence locations of
transmembrane segments from the Swiss—Prot data
base are compared with our predictions. Out of 168
integral membrane proteins, 130 are recognized
with correct sequence location and conformation of
transmembrane segments. Corresponding per-seg-
ment performance parameters are then Q,~0.95 and
A~0.90. Competing methods have reached similar
prediction accuracy only after performing the mul-
tiple sequence alignment (Persson and Argos, 1994;
Rost et al., 1995) and/or after comparing topologi-
cal models for single sequence and using additional
folding determinants such as the positive-inside rule
(von Heijne, 1992; Jones er al., 1994; Rost et al.,
1996a). The last version of Rost er al.’s neural net-
work predictor (Rost et al., 1996b) predicts correct
topology for the photosynthetic reaction center (see
Introduction), but still fails to recognize spir_spime
(spiralin) and ftsh_ecoli protein as membrane pro-
teins. The FtsH protein is predicted with maximal
confidence by neural network as soluble protein.
The SPLIT algorithm predicts that both of the
expected transmembrane segments in the Swiss—
Prot entry information are membrane-spanning
helices (not shown). Hydrophobicity analysis and
available experimental data (Tomoyasu et al., 1995)
agree that FtsH is an integral membrane protein.
Therefore, high general accuracy of pattern recog-
nition methods does not prevent most serious pre-
diction failures because of wrongly learned rules
that are not transparent.

4.2. Comparison With Hydrophobicity Analysis

Hydrophobicity analysis with the same hydro-
phobicity scale is clearly inferior. Maximums corre-
sponding to helices B, D and E in the
photosynthetic reaction center (Fig. 4 and Fig. 35,
lower part) are not always recognized as potential
transmembrane domains. The threshold value (thin
straight line parallel to the x-axis at y = 1.58
height) used with the sliding window average of 19
residues (Jahnig, 1990) may be too high.
Insignificant decrease in the threshold value can sig-
nificantly improve apparent prediction accuracy.
One is left with subjectivity, if the choice of sliding
window length and the threshold height is comple-
tely free, or even worse, with delusion of objectivity,
when these parameters are adjusted during training
to produce the best results with tested proteins.

Embarrassing blindness to all of the potential
membrane-spanning segments in some integral
membrane proteins such as the RACTK1 pH sensi-
tive K' channel (Suzuki et al., 1994) is the weak-
ness of the wide sliding window (19 residues) Kyte—
Doolittle scheme (1982). Some mitochondrial trans-
porters, expected to have six membrane-spanning
helices (Walker, 1992) are predicted with only one
or none. For instance, in the adenine nucleotide
translocator 2 from yeast, none of the hydrophobi-
city maximums reaches the 1.58 level, while in the
brown fat uncoupling protein from a rat only one
maximum surpasses that level. Smaller sliding win-
dows of 7, 9 or 11 residues are often used, mainly
to define ends of membrane-spanning segments
(Reithmeier, 1995). Higher hydrophobicity peaks so
produced are also associated with an additional
increase in the noise level.

Too many predicted transmembriné segments is
a serious problem too. Older predictions of six
transmembrane segments for voltage-gated potass-
ium channels similar to Shaker from Drosophila
melanogaster (Jan and Jan, 1989) and four trans-
membrane segments for ionotropic glutamate recep-
tors (Gasic and Hollman, 1992) were based in part
on hydrophobicity plots. For the kainate receptor
GIluR-5 from rat brain, Swiss-Prot entry infor-
mation lists seven transmembrane segments at
sequence positions 100-120, 243-263, 315-335,
577-597, 616-636, 654-674 and 835-855.
Unrealistic absence of length distribution in pre-
dicted segments reveals that very simple sliding win-
dow algorithm has been used. Only bold segments
are predicted by us as transmembrane helical seg-
ments (Fig. 7). GluR-5 is likely to have the same
membrane-buried motifs as other ionotropic gluta-
mate receptors: three transmembrane helices and
the P-segment. Four additional potential transmem-
brane segments in the Swiss—Prot suggested top-
ology for the GIluR-5 are probably erroneous
assignments. Expected sequence locations of trans-
membrane segments from the Swiss—Prot data base
(designated by FT TRANSMEM in the feature
table) should not be taken as the “standard of
truth” (Persson and Argos, 1994) when testing the
performance of some new predictor. The presence
of errors in the Swiss-Prot data base (Jureti¢ et al.,
1998) may have caused apparent prediction accu-
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racy drop for segment prediction when we shifted
from testing crystal structures to testing Swiss-Prot
assignments for transmembrane domains. Apparent
per-residue prediction accuracy increase for incom-
pletely known structures may be due to a more
subtle common mistake in the SPLIT algorithm
and in the Swiss—Prot FT TRANSMEM designa-
tions: hydrophobicity does not correlate so well
with observed transmembrane location of a
sequence segment as assumed.

4.3, Prediction Of Unstable Membrane-buried
Helices

It is possible that short hydrophobic helices form
and enter membrane only after the assembly of pro-
tein monomers in a membrane, when stable back-
bone of membrane-spanning helices has already
being formed. Preference functions analysis fre-
quently predicts membrane-buried a-helices associ-
ated with considerable turn potential and not long
enough to span 3 nm of membrane lipid interior. In
the Shaker potassium channel monomer our prefer-
ence profiles (Fig. 6 and Fig. 8) identify all import-
ant structural and functional elements. The “ball”
part of the chain and ball inactivation mechanism
(Amstrong, 1992) is seen in Fig. 6 and Fig. 8 to
have high propensity for short membrane-attached
regular conformation. We predict membrane-buried
helix conformation for the N-terminal part of the
S4 segment. Only several residues (5-10) are needed
in the S4 segment to bridge the membrane
(Goldstein, 1996). This voltage-sensor element is
surprisingly free to move in the direction perpen-
dicular to the membrane surface under the influence
of a transmembrane electric field (Larsson er al.,
1996). Its instability in the membrane is indicated in
corresponding preference peak as high turn prefer-
ence and narrow width of less than 10 residues
likely to be in the membrane at any time (Figs 6-8).
Due to many positive charges present in the S4 seg-
ment, our digital predictor did not recognize it as
the transmembrane segment.

4.4. Predicted Secondary Structure Of The P-domain

The P-domain has emerged as the most common
building block for the pore walls in potassium,
sodium and calcium voltage and ligand-gated chan-
nels (Catterall, 1995; Goldstein, 1996). Its secondary
structure was inferred as f-strand or loop hairpin
structure that invaginates into the bilayer interior
(Miller, 1991; Bogusz and Busath, 1992). The
Chou-Fasman method (Chou and Fasman, 1978)
predicted a f-strand—turn—f-strand structure for the
pore region of potassium channels (Soman et al.,
1995). The last few years has produced theoretical
and experimental indications that the N-terminal
part of some P-domains is not in the S-strand con-
formation (Guy and Durell, 1994; Kiirz et al., 1995;
Lu and Miller, 1995). Our tests with voltage and
ligand-gated ion channels predicted membrane-bur-
ied o-helix conformation at the N-terminal part of
pore-forming domains in all P-domains found so
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far (only two examples are shown in Fig. 6 and
Fig. 7). This has been supported by recent exper-
iments (Gross and MacKinnon, 1996).

The p-sheet conformation is predicted for the
whole pore-forming sequence segment 430-450 in
Shaker polypeptide by another method that claims
high resolution and low noise (Sun and
Parthasarathy, 1994). Is our (different) prediction
due to the choice of the Kyte—Doolittle hydropathy
scale? Rose’s scale of mean fractional area loss for
each amino acid (Rose et al., 1985) was utilized by
the authors of the AutoRegressive Moving Average
model of spectral analysis (Sun, 1993). When the
Rose scale is used with the preference functions
method, the sequence position of the P-segment is
even better associated (than in Fig. 6) with narrow
high peak in helix-turn preferences (Fig. 8). Large
area loss in contact with water of residues in the N-
terminal to the middle part of the P-segment may
be important in membrane-anchoring. With the
Rose scale as the input, the digital predictor assigns
short transmembrane helix as the secondary struc-
ture of that segment. Therefore, our prediction of
membrane-buried o-helix conformation for the first
half of the P-segment is not dependent (but the pre-
diction of non-transmembrane character is depen-
dent) on the choice of Kyte-Doolittle
hydrophobicity scale.

4.5. Choice Of Amino Acid Attribute

The best performance with the Kyte—Doolittle
scale in predicting membrane-spanning helices
(Table 4) may be due to chosen training and testing
procedure. A part of the training procedure is the
choice of filter parameters. Their values (see
Methods) are chosen during the initial training pro-
cess with Kyte—Doolittle hydropathy values as the
input. Furthermore, the Kyte-Doolittle hydropho-
bicity analysis helped to determine expected trans-
membrane segments in the Swiss—Prot data base for
some of the membrane proteins that we use in the
training and testing procedure. However, evaluation
of the 12 best scales in predicting TMH in mem-
brane proteins of known crystallographic structure
(Juretic et al., 1998) also selected the Kyte—
Doolittle scale as the best.

The flexibility in the choice of amino acid attri-
butes for calculating hydrophobic moments is an
important additional in-built feature of our algor-
ithm giving it the capability to recognize surface
attached regular structures in the sequence besides
membrane-buried structures. The PRIFT scale
(Cornette et al., 1987) can often recognize such
structures even when the more commonly used
Eisenberg consensus hydrophobicity scale for calcu-
lating hydrophobic moments (Eisenberg et al.,
1984) fails to do so (not shown in this paper). Also,
the calculation of hydrophobic moments for
assumed f-sheet conformation is essential when the
preference function method is used with a goal to
predict membrane-buried f-strands (Jureti¢ et al.,
1998).
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Easy and quick sequence analysis with the SPLIT
predictor should uncover or correct assignments for
other potential membrane-buried segments. The
predicted spectrum of preference peaks can serve as
a rough guide or initial guess for the application of
other determinants of membrane protein topology,
which are known to increase prediction accuracy
(such as the positive-inside rule), and for the devel-
opment of detailed models of the three-dimensional
structure.

Acknowledgements—Thanks are due to Burkhard
Rost from EMBL, Heidelberg, Germany and
Sandor Pongor from ICGEB, Trieste, Italy, who
kindly provided databases of soluble and membrane
proteins, and to Countess Vivian Grisogono from
England and the American Biophysical Society,
who helped with journals not available at the
University of Split. This work was supported by
Croatian Ministry of Science Grants 1-03-171 and
177060 to D.J. and D.Z. and 1-07-159 to N.T. and
B.L.

REFERENCES

Allen, J. P., Feher, G., Yeates, T. O., Komiya, H. and
Rees, D. C. (1987) Proc. Natl. Acad. Sci. USA 84, 6162.

Amstrong, C. M. (1992) Physiol. Rev. 72, S5.

Bairoch, A. and Boeckmann, B. (1994) Nucleic Acids Res.
22, 3578.

Bangham, J. A. (1988) Analyt. Biochem. 174, 142,

Bennett, J. A. and Dingledine, R. (1995) Neuron 14, 373.

Bogusz, S. and Busath, D. D. (1992) Biophys. J. 62, 19.

Catterall, W. (1995) Annu. Rev. Biochem. 64, 493.

Chou, P. Y. and Fasman, G. D. (1978) Adv. Enzymol.
120, 97.

Cornette, J. L., Cease, K. B., Margalit, H., Spouge, J. L.,
Berzofsky, J. A. and DeLisi, C. (1987) J. Mol. Biol. 195,
659.

Cowan, S. W. and Rosenbusch, J. P. (1994) Science 264,
914.

Deisenhofer, J., Epp, O., Miki, K., Huber, R. and Michel,
H. (1985) Nature 318, 618.

Deisenhofer, J., Epp, O., Sinning, I. and Michel, H. (1995)
J. Mol. Biol. 246, 429.

Edelman, J. (1993) J. Mol. Biol. 232, 165.

Eisenberg, D., Schwarz, E., Komaromy, M. and Wall, R.
(1984) J. Mol. Biol. 179, 125.

Engelman, D. M., Steitz, T. A. and Goldman, A. (1986)
Annu. Rev. Biophys. Biophys. Chem. 15, 321.

Fasman, G. D. and Gilbert, W. A. (1990) Trends Biochem.
Sci. 15, 89.

Gasic, G. P. and Hollman, M. (1992) Annu. Rev. Physiol.
54, 507.

Goldstein, S. A. N. (1996) Neuron 16, 717.

Grey, M. W. (1996) Nature 383, 299.

Gross, A. and MacKinnon, R. (1996) Neuron 16, 399.

Guy, H. R. and Durell, S. R. (1994) J. Gen. Physiol. 17,
P7a (abstract).

Hollman, M., Maron, C. and Heinemann, S. (1994)
Neuron 13, 1331.

293

Iwata, S., Ostermeier, C., Ludwig, B. and Michel, H.
(1995) Nature 376, 660.

Jan, Y. N. and Jan, L. Y. (1989) Cell 56, 13.

Jahnig, F. (1989) In Prediction of Protein Structure and the
Principles of Protein Conformation, ed. G. D. Fasman,
p. 707. Plenum Press, New York.

Jahnig, F. (1990) Trends Biochem. Sci. 15, 93.

Jennings, M. L. (1989) Ann. Rev. Biochem. 58, 999.

Jones, D. T., Taylor, W. R. and Thornton, J. M. (1994)
Biochemistry 33, 3038.

Jureti¢, D., Lee, B. K., Trinajsti¢, N. and Williams, R. W.
(1993) Biopolymers 33, 255.

Jureti¢, D., Luci¢, B., Zuci¢, D. and Trinajsti¢, N. (1998)
Theoretical and Computational Chemistry, Vol 3.
Theoretical Organic Chemistry, ed. C. Parkanyi, Elsevier
Science, Amsterdam, pp. 405-445.

Kabsch, W. and Sander, C. (1983) Biopolymers 22, 2577.

Klein, P., Kanehisa, M. and DeLisi, C. (1985) Biochim.
Biophys. Acta 815, 468.

Kiihlbrandt, W., Wang, D. N. and Fujiyoshi, Y. (1994)
Nature 367, 614.

Kiirz, L. L., Zithlke, R. D., Yhang, H.-J. and Joho, R. H.
(1995) Biophys. J. 68, 900.

Kyte, J. and Doolittle, R. F. (1982) J. Mol. Biol. 157, 105.

Larsson, H. P., Baker, O. S., Dhillon, D. S. and Isacoff,
E. Y. (1996) Neuron 16, 387.

Lodish, H. F. (1988) Trends Biochem. Sci. 13, 332.

Lu, Q. and Miller, C. (1995) Science 268, 304.

Lupas, A., Van Dyke, M. and Stock, J. (1991) Science
252, 1162.

McDermott, G., Prince, S. M., Freer, A. A,
Hawthornthwaite-Lawless, A. M., Papiz, M. Z.,
Cogdell, R. J. and Isaacs, N. W. (1995) Nature 374,
517.

Miller, C. (1991) Science 252, 1092.

Pebay-Peyroula, E., Rummel, G., Rosenbusch, J. P. and
Landau, E. M. (1997) Science 277, 1676.

Persson, B. and Argos, P. (1994) J. Mol. Biol. 237, 182.

Ponnuswamy, P. K. and Gromiha, M. M. (1993) Int. J.
Peptide Protein. Res. 42, 326.

Reithmeier, R. A. (1995) Curr. Opin. Struct. Biol. 5, 491.

Rose, G. D., Geselowitz, A. R., Lesser, G. J., Lee, R. H.
and Zehfus, M. H. (1985) Science 229, 834.

Rost, B., Casadio, R., Fariselli, P. and Sander, C. (1995)
Protein Sci. 4, 521.

Rost, B., Fariselli, P. and Casadio, R. (1996a) Protein Sci.
5, 1704.

Rost, B., Casadio, R. and Fariselli, P. (1996b) In ISMB-
96 Proceedings Fourth International Conference on
Intelligent Systems for Molecular Biology, ed. D. J.
States, P. Agarwal, T. Gaasterland, L. Hunter and R.
F. Smith, p. 192. AAAI Press, Menlo Park, CA.

Sipos, L. and von Heijne, G. (1993) Eur. J. Biochem. 213,
1333,

Soman, K. V., McCammon, J. A. and Brown, A. M.
(1995) Protein Eng. 8, 397.

Sun, S. (1993) Protein structure prediction: power spectral
analysis approach and reduced representation model.
Ph.D. thesis. UMI Dissertation Services, Ann Arbor,
MI.

Sun, S. and Parthasarathy, R. (1994) Biophys. J. 66, 2092.

Sutcliffe, M. J., Wo, Z. G. and Oswald, R. E. (1996)
Biophys. J. 70, 1575.

Suzuki, M., Takahashi, K., Ikeda, M., Hayakawa, H.,
Ogawa, A., Kawaguchi, Y. and Sakai, O. (1994) Nature
367, 642.

Tomoyasu, T., Gamer, J., Bukau, B., Kanemori, M.,
Mori, H., Rutman, A. J., Oppenheim, A. B., Yura, T,
Yamanaka, K., Niki, H., Hiraga, S. and Ogura, T.
(1995) EMBO J. 14, 2551.

Tsukihara, T., Aoyama, H., Yamashita, E., Tomizaki, T.,
Yamaguchi, H., Shinzawa-Itoh, K., Nakashima, R.,
Yaono, R. and Yoshikawa, S. (1996) Science 272, 1136.



294 Juretic et al.

von Heijne, G. (1986) EMBO J. 5, 3021. White, S. H. (1994) Annu. Rev. Biophys. Biomol. Struct.
von Heijne, G. (1992) J. Mol. Biol. 225, 487. 23, 407.

von Heijne, G. (1995) Bio Essays 17, 25. Wo, Z. G. and Oswald, E. (1995a) Trends Neurosci. 18,
Walker, J. E. (1992) Curr. Opin. Struct. Biol. 2, 519. 161.

Weiss, M. S. and Schulz, G. E. (1992) J. Mol. Biol. 227, Wo, Z. G. and Oswald, E. (1995b) J. Biol. Chem. 270,
493. 2000.



