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1. INTRODUCTION

The problem of structure prediction for proteins involves secondary structure
prediction based on sequence analysis as the first step [1]. Secondary structure prediction
algonthms [2,3] that worked reasonably well with soluble proteins were considered inadequate
for membrane proteins [4]. Recently, different artificial neural network algorithms have been
used to predict secondary structure in globular soluble proteins [5-7] and sequence location of
transmembrane segments (TMS) in integral membrane proteins [8,9]. When a small data base
of structural features 1s used to train such algorithms there is always a danger of overtraining
and that 1s precisely the case with integral membrane proteins. The structure of only several
membrane proteins is known with high enough resolution for unambiguous assignment of
secondary structure features [10-15]. Enlarging the data base by the use of, for example, the
SWISS-PROT sequence data base [16] assignments of potential TMS as the 'standard of truth’
1s also connected with serious problems: in general, secondary structure information is not
provided and erroneous assignments may be present in the data base.

Training 1s not necessary for simpler algorithms for analysis of hydrophobicity profiles
[17-21}. However, recent improvements of sliding window algorithms [22] optimize all
variable parameters by using the very restricted number of integral membrane proteins of
known structure. Such procedure leads to overtraining and to a significant drop in prediction
quality for unrelated proteins. In general, overprediction of putative TMS, and a need for
subjective decision about their location and length is a common deficiency of hydrophobicity
plots. As often observed [18], hydrophobicity alone i1s not enough to detect membrane
spanning domains and their secondary structure conformation, because folding into the TMS
conformation is controlled by the primary structure context. Sequence folding codes may be
simpler for globular membrane proteins [23] than for globular soluble proteins, but paucity of
known membrane protein structures is still making it very difficult to recognize such codes.
Recognition of putative TMS from hydrophobicity plots may seem to be easy, but prediction of
such segments must be accompanied with prediction accuracy assessment to be meaningful. In
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spite of these shortcomings hydrophobicity plots are still considered among most promising
approaches to successful structure prediction schemes [24].

For a large number of deduced sequences, coming out daily from different genome
projects, theoretical sequence analysts is the only possible method for predicting TMS and
deciphering transmembrane topology. At present membrane-embedded domains can be
predicted with good accuracy but this is not the case with the secondary structure of these
domains. This 1s important deficiency of the shiding window methods based on sequence
hydrophobicity, because only the secondary structure information can serve as the starting
pomnt for predicting protein assembly into the final three-dimensional structure. In this report
we shall descnbe a theoretical method based on hydropathy analysis that accurately predicts
not only the sequence location of transmembrane segments but their secondary structure
conformation as well.

The conformation of TMS seems to be «-helical for most membrane proteins
[12,13,25-27], but there are some proteins, such as porins, that have TMS n the f-sheet
conformation [28]. There may also exist proteins with both helical and -strand
transmembrane segments or with transmembrane helical segments combined with stll
unknown topology of membrane buried B-strands [29-31]. This work 15 focused on the
prediction of transmembrane helical segments (TMH), but our algonthms do allow the
prediction of transmembrane or surface attached [-strands (TMBS) as well.

Our approach 1s to associate given amino acid type both with 1ts secondary structure
conformation and with hydrophobicities of 1ts sequence neighbors in a carefully selected
reference set of membrane and soluble proteins. Conformational preferences are then
calculated. Since preferences depend not only on amino acid type but also on amino acid
attributes and local sequence context, our predictor is using preference functions [32]. Very
high preferences for the a-helix conformation (often higher than 4.0) are then associated with
residues known to have very hydrophobic sequence environment inside transmembrane
segments with known sequence location. Based on chosen scale of 20 amino acid attrnibutes
(such as hydrophobicity, polanty, statistical preferences), secondary structure conformation is
first predicted as a-hehcal, 3-sheet, turn or undefined conformation in given protein sequence
and secondly those segments are selected that have high preference for the membrane-
embedded conformation.

In effect, our method predicts 6 different secondary structure conformations: o-helical,
B-sheet, turn, undefined, TMH and TMBS Only primary structure segments with predicted
long uninterrupted stretches of a-helical residues with high maximum preference for helical
configuration are considered as candidates for the TMH. Longer [-strands are also predicted
and, at least in porins, are never confused with TMH. We have no false positive predictions of
TMH 1n porins, but we do have false positive predictions of TMH in some soluble proteins.

By using the cross-validation statistical procedure and Kyte-Doobttle hydropathy scale,
the prediction results for TMH in the training data base of 63 membrane proteins common to
us and to Rost ef al. [9] and also to Jones ef al. [33] were similar in accuracy by all three
methods. When training data base 1s enlarged to 168 proteins, we maintain the 95% accuracy
for predicted transmembrane helices and almost 80% (78.6%) of proteins are predicted with
100% correct transmembrane topology. When 168 proteins are divided in the above mentioned
training set of 63 proteins and an independent test set of 105 proteins, all performance
parameters for TMH prediction associated with a set of 105 proteins exhibited a decrease
which was smaller in our case than for Rost ef al. [9].
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2. METHODS

2.1. Selecting protein data bases for training and for testing

Rost et al. wramning hst of protemns [9] and SWISS-PROT sequence data base [16]
release 29 and 31 were used to select training and testing sets of proteins. We examined more
than 4000 proteins with transmembrane domains mostly selected from the SWISS-PROT data
base release 29. A total of 168 integral membrane proteins were finally selected. These are in
alphabetical order with the SWISS-PROT release code or letter 't (for the Rost ef al. proteins
[9]). Letter 's' is added when appropriate to indicate that signal sequence has been removed:
4f2 human(r), Sht3 mouse(rs), alaa human(r), a2aa_human(r), a4_human(rs), aalr_canfa(r),
aa2a_canfa(r), achl xenla(29s), acm5_human(29), adt nicpr(r),  adt2 yeast(29),
ag22 mouse(29), aqpl human(29), athb_rat(29), athp_neucr(29), atml_yeast(31),
atnl _human(29), atp9 wheat(29), atpl ecoli(31), b3at human(29), bach_halhm(r),
bacr_halha(r), <561 bovin(29), cadn mouse(29s), carl dicdi(29), c¢b2r_human(29),
cb21 pea(r), cd2 human(29s), c¢d7 human(29s), cd72_human(29), cd8a_human(29s),
cek2 chick(rs), cgcc_bovin(29), cicl cypca(29), cikl drome(29), cox2_parli(29),
cox9_veast(29), cpSa_cantr(29), cxbS_rat(29), cyda ecoli(29), cydb_ecoli(29), cyf_brara(29),
cyoa_ecoli(rs), cyob ecoli(r), cyoc ecoli(r), cyod ecol(r), cyoe ecoli(r), dhg_ecoli(31),
dhsc_bacsu(29), divb bacsu(29), dmsc_ecoli(29), dsbb ecoli(31), edgl_human(r),
egf mouse(31), exbb ecoli(29), fce2 human(r), fix) rhime(29), fmir_rabit(29),
frdd_provu(29), fisl ecoh(29), fish ecoli(29), fun_human(29s), g2If human(29),
gaal bovin(29), gasr human(29), gcsr_human(31s), ghr_human(29s), glp pig(r),
glpa_human(rs), glpc_human(r), glira_rat(rs), gmer_human(rs), gptb_human(rs), gpt_cnlo(r),
grhr human(29), ha2l human(29s), hb23_mouse(29), hema_cdvo(r), hema_measa(r),
hema pidma(r), hg2a human(r), hly4 ecoli(29), hmdh human(29), 1ggb strsp(r),
iI2a_human(rs), i12b_human(rs), imma_cttfr(29), 1sp6_yeast(29), 1taS_mouse(r),
itbl _human(29s), kdgl ecoli(31), kgtp_ecoh(29), lacy_ecoli(r), lech_human(r), leci_mouse(r),
lep_ecoli(r), lhal rhosh(29), thb4 rhopa(29), ly49 mouse(29), m49_strpy(29s),
magl mouse(rs), malf ecoli(r), malg ecoli(29), mas6 yeast(31), mdr3_human(31),
melb _ecoli(29), mepa_mouse(31s), mota_ecol(29), motb_ecol(r), mpcp_rat(29),
mprd_human(rs), myp0 human(rs), mypr_human(29), nals_bovin(29), nep_human(r},
ngfr human(rs), nkll mouse(29), nntm_bowvin(31), nram iavda(29), ochl_yeast(29),
oec6_spiol(29), oppb_salty(r), oppc salty(r), opsl calwi(r), ops2 drome(r), ops3_drome(r),
ops4 drome(r), opsb_human(r), opsd human(r), opsg human(r), opsr_human(r),
pigr_human(r), psaa pinth(31), psab pinth(31),  psbi_horvu(29),  ptgb_ecoli(31),
ptma_ecoli(r), sece ecoli(r), secy ecoli(29), spc2_canfa(29), spir_spime(29), stub_drome(29),
sy65 drome(29), sybl human(29), synp rat(29), talé6 _human(29), tapa_human(29),
tat2 yeast(31), tca_human(29), tcbl_rabit(r), tccl _mouse(29), tcrb _bacsu(31),
tee6 strpy(29s), tgfa human(31s), thas_human(29), tanfa bowvin(29), 1inrl_human(31),
trbm_human(rs), trsrhuman(r), tsad grala(31s), ucp rat(29), va34 vaccc(29),
vcal human(29s), vglg hrsva(29), vmt2 iaann(r), vnb_inbbe(r), vs10_rotbn(29),
wapa_strmu(29s).

Of these proteins 80 had a single transmembrane helix, 6 had 2, 6 had 3, 14 had 4, 4
had 5, 13 had 6, 24 had 7, 5 had 8, 2 had 10, 3 had 11, 9 had 12, and 2 had more than 12
TMH. There were 662 expected transmembrane segments with 14359 residues in 'observed’
transmembrane helix configuration among total number of 67155 residues. In the selection
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process preference was given to proteins with transmembrane domains without associated label
(such as 'putative’). Proteins with 'probable’ or 'potential' transmembrane domains were also
collected in the case when such segments were sandwiched between protein domains of known
cytoplasmatic and extracellular identity. Signal sequences, claimed as such in the SWISS-
"PROT, were omitted.

In order to facilitate comparisons with other statistical methods the training data base of
proteins contained a subset of the training data base selected by Rost ez al. [9] that was already
a subset of the training data base selected by Jones et al. [33]. The omission of some proteins
first by Rost and then by us decreased the size of the original data base from 83 (Jones et al.,
[33]) to 69 (Rost er al., [9]) and to 63 (this work). While Rost omitted 14 proteins because
they were less well determined experimentally than other proteins included for the training
procedure by Jones, a few additional polypeptides were omitted by us because of their known
X-ray structure that we later used for rigorous testing of our algorithm. Two proteins longer
than 1000 amino acids were omitted, too. Some proteins from the 168 protein list have been
taken without N-terminal or C-terminal amino acids in undefined conformation so that their
final length 1s also less than 1000 residues. These are: atnl _human with omitted 23 C-terminal
amino acids, cicl_cypca with only first 720 amino acids taken out of 1852, egf mouse with
omitted 400 N-terminal amino acids, mdr3_human with omitted 279 C-terminal amino acids
and nntm_bovin with omitted 200 N-terminal amino acids.

We took care that all polypeptides selected by us show less than 30% similarity with
any other polypeptide used in the training process. Of 10 proteins from the test list of
membrane proteins with the best known structure only one (plant light-harvesting complex)
had 1ts twin (cb21_pea) in the data base of 168 proteins. The similarity was judged by the
HSSP data base of [34]. An exception to that rule are several of 63 proteins selected by Rost ef
al. [9]. These are hema_cdvo and hema_measa with 40% similarity, opsb and opsd with 41%
similanty, opsb and opsg with 37% similarity, opsb and opsr with 37% similarity, opsd and
opsg with 36% similarity, opsd and opsr with 35% similarity, ops4 and ops3 with 68%
similarity, aalr and aa2a with 44% similarity and opsg and opsr with 97% similarity. All of 105
proteins selected by us from SWISS-PROT releases 29 and 31 were less than 30% similar to
each other and less than 30% similar to any other protein of the complete set of 168 protein.
The rule of less than 30% similanty among tested proteins was not maintained for some special
data bases of such proteins, such as the above mentioned collection of integral membrane
protemns of the a-class with known high resolution X-ray structure. On the other hand, with the
exception of light-harvesting complex, we always made sure that no tested protein was more
than 30% similar to any protein from the training list of proteins.

All potential transmembrane segments in the reference set of 168 integral membrane
proteins were considered to be in the a-helix conformation during training process. Five
residues next to each observed TMH were considered to be in the turn conformation, while all
other residues were regarded as present in the undefined conformation. Soluble proteins and
membrane proteins with solved structure were analyzed with the Kabsch and Sander program
DSSP [35], which assigned the secondary structure. All helical conformations 'H', 'T', and 'G'
were lumped ito o-helical 'H), all beta into 'B', all turn into 'T', while all remaining residues
were considered to be in the 'U conformation. Transmembrane helices broken with turn
residues in the SWISS-PROT data base or by the DSSP algorithm, but reported as
transmembrane helices in the onginal papers, were considered to be unbroken string of 'H
residues.
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Two sets of soluble globular proteins were selected from Protein Data Bank (PDB) for
testing for false positive results. In the set SOLU1 of 187 such proteins resolution for each
protein was equal or better than 3 A. Secondary structure conformations were determined by
the DSSP algornthm. In the set SOLU2 of 147 proteins (protein data set used in [7] plus 21
additional proteins) only proteins known with equal or better than 2.5 A resolution were
included. There was less than 25% pairwise similarity. Three different secondary structures
were determined as descnbed by Rost and Sander [7]. Both data sets are available in the
Supplementary Matenal.

Two sets of B-class soluble proteins were used for training.

a) The first set of 37 such proteins SOLBI has been selected from Protein Data Bank among
soluble proteins known with equal or better than 3 A resolution. When more than one chain
was present in the protemn only the first polypeptide chain denoted with the last letter '1' has
been selected:

lacx, 1bbpl, 1cd4, 1fdll, 1hnel, Imcpl, lpaz, 1pfc, Irbp, 1rei, 1sgt, 1tonl, 1trml, 2alp, 2apr,
2azal, 2fb41, 2fbjl, 2gchl, 2cna, 2gcr, 211b, 2itn, 2pcy, 2pkal, 2ptn, 2rhe, 2rspl, 2sga, 2sodl,
2tbvl, 3est, 3rp2, 3sgbl, 4ape, 4cmsl, Spep.

b) The second set of 39 such proteins SOLB2 has been selected from SOLU?2 data set:

lazu, 1bbp_ A, lbds, 1bmv 1, 1bmv_ 2, 1cbh, 1cd4, 1cdt A, 1fc2 D, 1fdl H, Imcp L, Imh,
Ishl, 2alp, 2gcr, 2ilb, 2ltn A, 2ltn B, 2mev 1, 2mev 3, 2pab_A, 2pcy, 2pka A, 2rsp A,
2sod_B, 2stv, 3ait, 3ebx, 3hla B, 3hmg A, 4cms, 4cpa I, 4rhv_1, 4rhv 3, 4sgb I Ser2 E,
Shvp A, 6hir, 9ap1_B.

The data base of the best known 10 integral membrane proteins with transmembrane
helical segments (BESTP) consisted of photosynthetic reaction center subunits H, L and M
from Rhodobacter viridis [12,36] and Rhodobacter sphaeroides [25], plant light-harvesting
complex LHC-II [13], hight-harvesting protein LHA2 from Rhodopseudomonas acidophila
[27], and two human class I histocompatibility antigens 1b14 [37] and 1a02 {38]. The X-ray
structure for the single transmembrane segment of each histocompatibility antigen was not
determined, but since all the rest of the three-dimensional structures of these proteins was
determined by the X-ray crystallography, we considered the combination of experimental and
theoretical methods used to describe their structure powerful enough to include these proteins
among the best known integral membrane proteins.

The data base PORINS consisted of seven porins and two defensins all with known or
proposed transmembrane [-strand structure. The porins with known X-ray structure were
ponn from Rhodobacter capsulatus [10,28] and portns PhoE and OmpF from Escherichia coli
[39,11]. Porins with proposed transmembrane [(-barrel topology were anion-selective porin
Omp32 from Comamonas acidovorans [40], outer membrane protein OmpA from Escherichia
coli K12 membrane (membrane-embedded fragment residues 1 to 177, [41,42]), and
mitochondrial outer membrane porin from human B-lymphocytes [43] and from Newurospora
crassa [44). Two defensins of known structure were HNP-3 [45] and defensin from larvae of
the dragonfly Aeschna cyanea [46].

2.2. Main performance parameters used to judge the prediction quality

a) Parameters for individual residues are composed of correct positive predictions p,
correct negative predictions n, overpredictions o and underpredictions u for all residues found
in the protein data base. One such parameter 1s the fraction of residues predicted in correct
secondary conformation: | |
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Q3=(p;+p2*+p3 )N

where secondary conformations are helix, beta and everything else (turn, undefined or coil)
found in the data base having a total of N residues. Another such parameter [47] is

Aj = (Nj- 0 - u; J/N;

where i is the index of chosen secondary conformation with N; residues from protein data base
found in that conformation, while o, and u; are respectively overpredicted and underpredicted
residues in that conformation. While lower bound for the Q parameter is O, the A parameter
can be large negative number for poor prediction. For a-helical, B-strand, turn, undefined and
TMH conformation A parameters are respectively Ay, Ay, A, Ay and Ay |

b) Parameters for TMH segments as prediction units. Parameter of the A type measures
prediction accuracy for transmembrane segments instead of prediction accuracy for individual
residues:

o,

Ag = (Ng-05-ug )/Ng

where s denotes transmembrane segment. There are N observed transmembrane segments, ug
underpredicted and o, overpredicted segments. Even simpler performance measure is the
fraction of correctly predicted TMH:

Qs = Nes/Ng

where N, is the number of correctly predicted TMH. There must be an overlap of at least 9
residues in the TMH conformation between predicted and observed TMH for the case of
correctly predicted TMH.

¢) Protein topology parameters. If there are n,. proteins with 100% correctly predicted
transmembrane topology (all TMH correctly predicted in correct sequence positions) out of the
total number of n tested proteins, than a very useful parameter 1s

Qp=n¢/n

Qur algorithm also reports absolute values of ) residues correctly predicted,
overpredicted and underpredicted in the TMH conformation, b) transmembrane helical
segments predicted, correctly predicted, overpredicted and underpredicted as TMH, c) proteins
recognized as membrane proteins and d) proteins recognized with 100% correct topology.

2.3. Hydrophobic moment profile

Hydrophobic moment profile is calculated as described by Eisenberg et al {48} to
collect information about possible amphipathic helices and strands. We used only the PRIFT
scale (# 27 in Table 5) to find hydrophobic moments. Scales used for the calculation of
hydrophobic moments were not normalized. The PRIFT scale produces high moments
(sometimes higher than 2.0) for sequence segments known to be highly amphipathic. An 1deal
o~hehx twist angle of 100 was used to associate o-helix hydrophobic moments with all
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sequence positions. Less ideal angle of 162 (more appropriate to the B-barrel structure) was
used to produce sequence profile of B-strand moments.

2.3.1. The training procedure for the preference functions method

The prediction is based on the method of preference functions [32]. The PREF suite of
algorithms 1n the present version (PREF 3.0) consists of training and testing algorithms called
PREF (PREference Functions) and SPLIT (predicted long helices are SPLIT into two or three
TMH), respectively. The first obligatory step in the PREF algorithm 1s the choice of amino
acids scale of 20 values. Secondly, data sets of proteins are selected to train the algorithm.
Standard training procedure uses the Kyte and Doolittle hydropathy scale [17], 168 integral
membrane proteins listed above and 37 soluble -class proteins (SOLB1). With a chosen scale,
sequence environment s calculated for each amino acid type associated with one of four
secondary conformations (helix, sheet, turn and undefined) at each sequence position, as an
average over hydrophobicity values of neighboring 10 amino acids. The amino acid attribute of
the central amino acid residue in the shding window 1s not taken into account to calculate
sequence environment. This 1s being done for the whole data set of proteins Collected
sequence environments are grouped into nine classes so that about equal number of
environments 1s collected into each class. For the best scales, histograms of frequency
distnbutions for environments for the same amino acid type differ significantly for different
secondary conformations. This 1s most easily seen if frequency distributions are replaced with
corresponding Gaussian functions. For each amino acid type in each secondary conformation
three Gaussian parameters are extracted from observed frequency distributions. These are: a)
the number of sequence environments, b) average value for sequence environments and c¢)
standard deviation for sequence environments. Ail such parameters (3 x 20 x 4 if four different
folding motfs are considered) are collected in the file with Gaussian parameters (enclosed in
the Supplementary Matenal, Table III).

2.3.2. The testing procedure

Preference functions are calculated in the SPLIT algonthm as described before (ref
[32]; equations (2) and (3)) For instance, up to the constant factor, the preference function for
alanine tn helix conformation is found as the ratio of the Gaussian function for alanine in helix
conformation to sum of Gaussian functions for alanine in all four conformations. The constant
divisor 1s the frequency of helix conformation in protein data set. For tested protein preference
functions are evaluated for all amino acids and for all four conformations. Ratio of Gaussians,
as probability to find conformational motif, can be very successful in detecting such motifs,
when overlap of corresponding distnbutions is not too great, or, in other words, when different
conformations can be associated with different scores or averages (as proved by Lupas er al.
(49] in their statistical method for detecting coiled-cotl structures).

2.3.3. Decision constants choice

The automatic choice of decision constants (DC) 1s the standard feature of the testing
procedure by the SPLIT algorithm. In the first prediction loop, preliminary prediction results
for tested protein are used for the automatic determination of decision constants for helix
(dch), sheet (dce) and coil (dec) conformation (turn or undefined). Each choice of decision
constants 1s made sequentially and independently of previous choices in the following order:
Constants dch = 0.3, dce = -0.6 and dcc = 0 are chosen when predicted helical conformation is
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greater than 30% and percentage of charged amino acids is less than 20%. Constants dch = -
0.2, dce = 0.4 and dcc = O are chosen when percentage of predicted sheet conformation 1s
higher than 25%, while the percentage of predicted helical conformation is less than 15%. In
the case if predicted helical conformation is higher than 25%, protein is longer than 300 amino
acids and predicted number of transmembrane helices is higher than 6, then chosen decision
constants are dch = 0.4, dce = -0.2 and dcc = 0. For all other possibilities decision constants
are all set to zero. The algorithm is used without decision constants by setting imtially all
decision constants to zero, only when so noted in the text!

2.3.4. Collection of environments and smoothing procedure

Except when testing the window length influence on prediction performance a shiding
window length of 11 residues was used throughout this report in such a way that central
residue in the window was omitted from averaging procedure. Resulting sequence
environments are then used for the evaluation of preference functions. In practice it is
advantageous to smooth these preferences before comparing preference profiles. Seven residue
preferences are smoothed for the 'H' conformation, five for the 'B' conformation and three for
the 'U" or 'T' conformation. The smoothed value is always assigned to the residue in the middle
of the sliding window. Corresponding decision constants are added to strings of smoothed
preference values. Numerical values for smoothed preferences for four conformational states
are then compared and secondary structure is assigned to the highest preference. In the
remaining text whenever preferences are mentioned or reported it should be understood that
we have in mind the sequence profile of smoothed preferences.

2.3.5. Filtering procedure

Unrealistic assignments of a single isolated residue assuming helical or beta sheet
conformation, among two left and two right neighbors in nonregular conformations, are
corrected by introducing nonregular ('U') conformation for such residues. Isolated residues in
'B' conformation surrounded by two left and two nght residues in 'H' conformations are
reassigned as residues in helical conformation. Similarly the BBHBB pattern 1s transtormed
into BBBBB. Two arginines neighbors or two proline neighbors are assigned to nonregular
('U) conformation whenever found with helix preference less than 3.0.

The essential part of the algorithm recognizes transmembrane helix conformation as the
fifth possible conformation. The first appearance of the 'H' conformation is memorized and
subsequent 'H' residues are counted if not interrupted by any other conformational assignment.
The value for maximum helical preference is also memorized in each helical segment. String of
helical residues is considered as possible transmembrane helix if found to be longer than 12
residues with maximum preference for helical conformation higher than 2.7. Residues
predicted in the 'B' conformation as neighbors to candidate TMH segment are used to elongate
it at both ends. Even shorter helical segments (from 9 to 14 residues in length) are memorized
and fused together if less than six residues apart with at least one maximum helix preference
higher than 2.7. Total number of predicted C caps 1s memonzed at this stage and used as
information about total number of predicted transmembrane helices in the protein. The
percentage of predicted helical and sheet residues with respect to protein sequence is also
“calculated in order to determine decision constants for the next prediction cycle.

In order to compare predicted and observed transmembrane helices automatic
extraction of observed transmembrane segments with probable helical conformation is also
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performed. It was necessary to consider all uninterrupted transmembrane segments longer than
13 and shorter than 38 residues as potential transmembrane helical segments.

The main part of the filter is designed to reexamine potential transmembrane helical
segments and to shorten or split TMH of unrealistic length. All candidates for predicted TMH
are divided 1into five groups: short segments having 13 to 16 residues, normal length segments
having 17 to 27 residues, long segments having 28 to 35 residues, very long segments having
36 to 54 residues and obviously wrong predictions of segments longer than 54 residues.

Short TMH are eliminated if their TMH preference peak is less than 2.7, and also in the
case three of residues E, P, K, D, R are present in the segment with maximum helix peak less
than 4.0. Normal length TMH are shortened from both ends in the case when any of charged
amino acids: arginine, lysine, aspartic or glutamic acid are found inside first four and last four
positions of the putative transmembrane segment. In addition, turn preference had to be greater
than 1.0 for these amino acids for shortening to take effect. New N and C caps are positioned
at the first residue inside segment (going from old helix caps in the direction of helix middle)
that could remain in the helical conformation. We shall call this subroutine the CHARGE-
BREAK subroutine. Also disregarded are TMH that are too short (shorter than 17 amino
acids) after CHARGE-BREAK routine, and of not enough high helical preference peak (less
than 2.7). -

In the case if length of putative TMH remains equal or greater than 24 FILTER
subroutine is applied. It shortens TMH on both ends until helix preference becomes too high.
Helical preference is multiplied with number of residues reached from the cap residue position
and resulting value compared with (TMH length -21)/2. The FILTER creates new helix cap
positions closer to the middle of TMH. The shift in the new cap positions 1s greater for lower
helical preference and for longer TMH.

Long TMH's, having 28 to 35 residues, are shortened by using the TURN-BREAK
subroutine. In brief, residues inside helix and next to each cap are examined with respect to
their turn preferences. If maximum turn preference 1s greater than 1.0 then corresponding cap
position is shifted to the position next to turn preference maximum in the direction of helix
middle. In the case if remaimng TMH is still longer than 24 residues, than CHARGE-BREAK
and FILTER subroutine is applied Predicted helical segments longer than 35 residues are
broken into two or three segments with the TURN-BREAK subroutine and with a help of
additional similar routine for finding maximum a-helix preference, while both TURN-BREAK
and FILTER routine 1s used to shorten remaining segments that are still too long.

After ending the main filter routine the 'T' conformation 1s assigned to four residues
next to each predicted helix cap. Also peaks in helix preference higher than 4.0 are examined
for the whole sequence. Additional (overlooked) TMH 1s assigned as 15 residue segment
centered around such peak if a) less than three of K, P, D, R, E residues are present in such a
segment, if b) such segment is at least 20 residues removed from sequence terminals, and if c)
TMH was not previously predicted in that position.

2.3.6. Predicting transmembrane B-strands (TMBS)

The SPLIT algorithm was optimized for predicting transmembrane a-helices by using
the Kyte-Doolittle hydropathy scale to create profile of a-helix preferences. The digital version
of prediction for transmembrane o-helices is designated as the TMH predictor. Predicted
profile of B-strand preferences can be used to find sequence location of potential membrane-
embedded or surface-attached B-strands. The score for potential membrane-attached f3-strand
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conformation is found by summing up B-sheet preference and B-sheet hydrophobic moment
(calculated using PRIFT scale [50]) for each sequence position. The digital version of the
prediction for potential membrane-embedded B-strands (TMBS predictor) is then found as
collection of sequence segments at least 6 residues long with each residue-associated score
higher than 2.0.

2.3.7. Adopted cross-validation technique

The prediction performance statistics is better for larger number of proteins tested. All
proteins included in the training data base can be used for testing as well if the jack-knife or
cross-validation technique is adopted (see ref. [7] concerning the necessity of using this
statistical technique to estimate the prediction performance). We used 5-times cross-validation
to obtain representative results for the reference set of 168 integral membrane proteins after
extracting preference functions with the Kyte-Doolittle hydropathy scale. The same set of 37
soluble proteins of the B-class (SOLB1) was always included in the training data base of
proteins. It was noticed that prediction results are sensitive to the type of transmembrane
topology. Therefore, for the 5-times cross-validation, all proteins were grouped according to
expected number of transmembrane segments. We took care that each group of tested
membrane proteins (33 or 34 proteins) has similar distribution of proteins with respect to their
transmembrane topology as the total set of 168 membrane proteins. For instance smaller
reference set of 135 proteins, used in the 'best' training procedure, is left when following 33
proteins are removed from the original reference set: cd72, cd7, cd8a, cek2, cp5a, egf, vcal,
va34, tsad, trsr, trbm, ghr, glp, glpa, glpc, gmcr, gplb, atpl, exbb, cxb5, dsbb, atml, bach,
carl, cb2r, cyda, edgl, fmir, opsb, athp, gpt, b3at, tat2. In some explicitly stated cases the 2-
times cross validation procedure was used such that training set of 168 proteins was divided
into 63 proteins selected by Jones ef al. [33] and Rost ef al. [9], and 105 proteins selected by
us.

Both training and testing process take only several minutes on the PC equipped with
the 486 processor in the case when up to 200 proteins are used. The FORTRAN source code,
files with Gaussian parameters and protein data bases used in this report are available via
Internet (see Supplementary Matenal).

3. RESULTS

3.1. Conformational preference for transmembrane o-helix is strongly dependent on
sequence hydrophobic environment for most amino acid types

When only transmembrane segments, expected to be in the helical conformation, are
used to train the algorithm to predict helical segments, then preference for the o-helix
conformation ('H') is at the same time the preference for the TMH conformation. In our case
the training part of the algorithm uses so small percentage of the observed 'H' conformations in
soluble proteins (because only soluble proteins of the PB-class are used) that we can still
consider the 'H conformational— preference as the transmembrane helical segment
conformational preference. It appears that some amino acid types passively acquire the
conformation dictated by their neighbors (Figure 1), while others (mainly charged amino acids)
are able to resist to some extent (Table 1). Extremely secure dependence of TMH preference
on the hydrophobic sequence environment is found for 12 amino acid types (Table 1). Only
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Arg, Lys, Asp and Glu have the F factor (a statistical measure for the dependence of preference
on hydrophobicity of sequence neighbors) less than 50.
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Figure 1: Very strong dependence of the o-helix conformational preferences on average
hydrophobic sequence environment. Standard training procedure (Methods) was used.
Observed preferences for glycine (Figure 1A) and leucine (Figure 1B) are shown as open
points. Confidence limits, shown as bars above and below preference points, were calculated
as described by Ptitsyn [51] so that it was 67.5% certain that observed preferences would fell
between these values. The preference functions for leucine and glycine are shown as full lines.

~ From Figure 1 it is quite clear that linear approximation for the dependence of TMH
preference on sequence environment is not so good as the preference function approximation.
Similar results are obtained for other 18 amino acids (not shown). It is also clear that
preference functions can be regarded as good but not the best nonlinear fit to observed
preference points. For the four state model of secondary structure the preference function is
obtained as the ratio of one Gaussian function to four Gaussian functions (Methods). Normal
distribution (Gaussian function) is expected to be good fit for the histogram of sequence
environments [32,52] due to averaging procedure used to produce histograms for each amino
acid type and each secondary structure. However, cases of nonrandom distribution of amino
acid types among sequence environments for particular secondary structure motifs have been
observed [52] as well as the cases of too small number of sequence environments for the
particular class of sequence environments, chosen amino acid type, secondary structure and
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Table 1
Statistical parameters derived for the linear approximation of the dependence of helix
preference on hydrophobic environment

Amino acid Slope: b Standard error in F parameter (b/s)2:
type slope: s,
Ala 2.726 0.034 6360
Arg 0.088 0.033 7
Asn 0.601 0.052 131
Asp 0.210 0.038 31
Cys 2.441 0.050 2387
Gin 0.337 0.045 57
Glu 0.173 0.037 22
Gly 1.605 0.029 3040
His 0.739 0.070 111
Ile 3.624 0.029 15941
Leu 3.381 0.025 18042
Lys 0.192 0.038 25
Met 2.806 0.055 2568
Phe 3.393 0.035 9292
Pro 0.754 0.042 319
Ser 1.110 0.030 1340
Thr 0.880 0.030 870
Trp 2815 0.078 1288
Tyr 2.302 0.059 1510
Val 3317 0.025 16961

protein data set used for the training procedure (not shown). Both possibilities can produce less
than ideal fit of preference function to experimental data, and are discussed in a recent paper
[52].

3.2. Expected and predicted length distribution for transmembrane helical segments

The transmembrane segments (TMS) and transmembrane helical segments (TMH) are
not necessarily 1dentical in lengths. Qur predicted TMH could be longer and could be shorter
than usual length of TMS of 19-22 residues. Figure 2 illustrates in the form of histogram that
expected lengths of TMS could also be different from expected 19-22 residues.
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Figure 2: The length distribution of TMS in 168 proteins expected (Figure 2A) and predicted
as TMH by us (Figure 2B). Two-times cross validation procedure (Methods) was used.

Both expected TMS and predicted

TMH are often too short to span the
membrane as o-helices or are so long that
extramembrane parts in such segments must
exist. Helical configurations other than o-
helix should not be excluded for potential
transmembrane segments [31]. For instance,
it was pointed out [23] that 15 residue
segment could span the bilayer as a 3
helix. It s also possible that some
transmembrane  segments in  o-class
membrane proteins are in reality helical
segments that pass through a part of
- membrane depth [53] or through whole
membrane  depth  extending  outside
membrane or are in tilted orientation with
respect to orthogonal direction from
membrane surface. It appears from TMH
length distribution in 10 integral membrane
proteins of the best known structure too (not

Table 2

How results depend on the W parameter
(sliding window length)2

W QS ATM Qp
7 94.0 0.689 57
9 95.2 0.700 64
11 95.5 0.704 67
13 947 0.697 58
15 931 0.694 59
17 930 0.693 57
19 921 0.675 57

aPreference functions were extracted from
the data base of 63 membrane proteins
selected by Rost ef al [9] and 37 soluble
proteins of the [-class (SOLB1, Methods) by
using the PREF algorithm wversions with
sliding window length from 7 to 19 residues.
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shown) that some membrane protein structures must be able to use hydrophobic segments of
nonstandard lengths.

3.3. What is the optimal choice of the sliding window size?

In order to find the optimal length of the sliding window we vanied the W parameter
(shding window length) from 7 to 19 (Table 2). Tests were done with the version of the SPLIT
predictor that had corresponding length of the sliding window in each case. Only proteins
having two or more transmembrane segments were used to test the predictor. There were 88
such proteins from our list of 168 proteins. All three performance parameters A1)y, Qg, and Qp
(Methods) agree that a window size 11, requiring averaging of S left and 5 right sequence
neighbor attributes, is optimal. Window size 11 is the half way between optimal size of 7
restdues found by Degli Esposti ef al. [54] and optimal window size of 15 residues found by
Persson and Argos [55].

3.4. How do the results depend on different devices used in the SPLIT algorithm?

Table 3 results compare the importance of different devices used in the SPLIT
algonthm. Chosen smoothing procedure is very important, while main filter procedure is next
in importance. Subroutines 'FILTER', 'CHARGE-BREAK', 'TURN-BREAK' (Methods) and
routine for finding maximum preference for the a-helix configuration were all eliminated to
examine the importance of the main filter procedure. Automatic choice of decision constants
for each tested protein helps to improve the prediction accuracy and the improvement is most
obvious when A1) and Q, parameters are compared in the presence of the decision constants
device (first row) and in its absence (fourth row).

Table 3 .
The dependence of prediction results on different devices used in the SPLIT algonthm?
: # predicted  # proteins with
I S

SPLIT algonthm At Qs Qp TMH correct prediction
With no change 0.712 95.0 76.8 665 129
With no smoothing 0.646 87.0 578 613 97
Without main part of
the filter 0.655 953 63.7 596 107
With all DC =0 0.693 92.3 67.9 649 114
Without 'FILTER'
subroutine 0.701 95.0 76.8 665 129
Without additional

0.705 94 1 74.4 659 125

parts of the filter

aEach device is separately eliminated from the algonthm before testing the prediction on the
complete data set of 168 membrane proteins. The best Gaussian parameters file was obtained
after 5-times cross validation procedure applied as described in the Methods section (the 'best’
training procedure), but cross-validation was not performed. Refer to the Methods section for
performance parameters.
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'FILTER' subroutine alone seems to be important only in adjusting the positions of
transmembrane helical caps. Additional parts of the filter, such as fusing short predicted
helices, that may be the part of longer transmembrane helix, and extracting very short predicted
helices with very high o-hehx preference, are of minor importance. The Q; parameter, or
percentage of TMH that are correctly predicted, can be very misleading as the measure of
prediction accuracy in the absence of a good filter, because it then increases together with the
increase (overprediction) of residues predicted in the TMH conformation.

Table 4
Several scales of amino acid attributes used in this report

AA code KYTDOa3 MODKDPY CPREF¢
Ala 1.8 1.10 0.6942
Arg -4.5 -5.10 -1.4344
Asn -3.5 -3.50 -0.7786
Asp -3.5 -3.60 -1.1296
Cys 2.5 2.50 0.3427
Gin -3.5 -3.68 -1.0870
Glu -3.5 -3.20 -1.2480
Gly -0.4 -0.64 -0.0549
His -3.2 -3.20 -0.9697
Ile 4.5 4.50 1.7999
Leu 3.8 3.80 1.1403
Lys 3.9 -4.11 -1.1850
Met 1.9 -0 1.3557
Phe 28 2.80 1.3171
Pro -1.6 -1.90 -0.5091
Ser -0.8 -0.50 -0.2812
Thr 0.7 -0.70 -0.2030
Trp -0.9 -0.46 0.8475
Tyr -1.3 -1.3 0.3693
Val 42 4.2 1.0138

3,b,c Scale acronyms are defined in Table 5.
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3.5. What are the best scales of amino acid attributes?

As expected many different hydrophobicity scales are good predictors of

transmembrane helical segments. The same scale is used during training and testing procedure.
Each scale 1s normalized with average zero and standard deviation of one when called by the
algonthm. As an example 20 values for the Kyte-Doolittle scale (KYTDO) are given together
with modified Kyte-Doolittle scale (MODKD) and with normalized scale of constant
preferences (CPREF) that were extracted from the reference data set of 168 membrane
proteins (Table 4).

100 scales that are available in the algorithm.

Table 5

Evaluation of hydrophobicity scales?

The hist of 30 scales in Table S is our selection of the best predictor-scales from almost

Performance parameters

Scale # Acronym: Attnbute Reference
ATM Qs Qp
83  MODKD: Modified Kyte- This work (Table4) 0.711 957 768
Doolittle hydropathy scale
1 KYTDO: Hydropathy values [17] 0.704 95.9 78.6
100 CPREF: TMH preferences This work (Table 4) 0.699 964 732
from training data base
PONG1: Surrounding |
17 . .680 94. 68.5
hydrophobicity scale [47] 0.68 ]
EISEN: Consensus
. : : 67.8
26 hydrophobicity scale 18] 0675 250
9 VHEBL: Hydropathy scale for [56] 0672 952 68.5
membrane proteins
35 NNEIG: Sc?lf-consistent [50] 0.671 93 7 66.7
hydrophobicity scale
CHOTH: Proportion of
: : : : 66.7
29 residues 95 percent bunied [57] 0.670 238
30 Eg)SSEF : Mean fractional area (58] 0.666 93 7 63 1
59 EDEZS: Optimal predictors for [22] 0.660 04 6 66.7
width 25
- EDE21: Optimal predictors for
: 5.5
3 o [22] 0660 946 6
4 ENGEL: Hydropathy values [59] 0.659 94.7 64.9

Continued on next page.
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49

71
44

70

28

16

31

42

12

19

27

21

78

HEIJN: Hydrophobicity scale
for TMS

GRANT: Polanty scale

DEBER: M/A ratio n
membrane transport proteins

GUY-M: Average of four
hydrophobicity scales

WOESE: Polarity scale

PONNU: Surrounding
hydrophobicity scale

KRIGK: Ethanol to H,O
hydrophobicity scale

HOPPW: Antigenic
determinant scale

JANIN: Free energy of
transfer from protein interior

CIDAB: Hydrophobicity scale
for proteins of o/ class

GUYFE: Transfer free energy
for 6 layers in proteins

MIJER: Average contact
energy

GIBRA: Solvent accessibility
In proteins

FAUPL: Solution
hydrophobicities

PONG3: Combined membrane

hydrophobicity scale

PRIFT: Statistical scale for
amphipathic helices

ROSEM: Self-solvation free-
energy changes

CASSI: Structure-derived
hydrophobicity scale

[60]

[61]
[62]

[63]

[64]
[65]
[66]
[67]
[68]
(69}
[63]
[70]
[71]
72}
[47)
[50]
[73]

[74]

0.658

0.658

0.656

0.655

0.652

0.652

0.650

0.649

0.645

0.645

0.645

0.645

0.645

0.643

0.642

0.642

0.639

0.635

94.4

93.2

93.2

92.1

94.0

91.5

93.1

94.1

92.9

90.5

91.4

912

92.1

92.6

94.9

93.2

92.1

93.4

63.7

62.5

62.5

64.3

61.9

59.5

60.1

63.1

61.3

63.7

61.9

61.9

60.1

60.1

63.7

613

61.9

583

aFor a chosen scale of amino acid attributes each of 168 membrane proteins was tested once
without being used in the training procedure as described in the Methods section.
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3.6. The prediction results with Kyte-Doolittle preference functions

Full details of prediction results for each of 168 reference membrane proteins are
enclosed in the Supplementary Material (Table IV). We used cross-validation (5-fold,
Methods) and the KYTDO scale (# 1). All of 168 proteins were correctly predicted as
membrane proteins having at least one transmembrane segment. With 100% correct
transmembrane topology 130 proteins were predicted. A total of 631 transmembrane helices
were correctly predicted out of a total number of 662 expected transmembrane segments. Only
36 TMH were overpredicted and 31 underpredicted. Of individual residues in TMH
configuration 12273 out of 14374 were correctly predicted, 2033 overpredicted and 2101
underpredicted. The performance parameters (Methods) are then: A = 0.712, Qg = 95.3%,
Qp =77.4%, A;=0.898.

As an example of complete information provided by the predictor the predicted
preference profiles and hydrophobic moment profiles for the gef ecoli protein (outside
reference list of 168 proteins and without assigned transmembrane domain in the SWISS-
PROT data base) are given in Table 6 as unmodified output file. The gef protein can stimulate
cell killing [75] after overexpression and oligomerization in the membrane environment. In
addition to predicted o-helix transmembrane segment from residues 6 to 24 there 1s also the
31-46 segment predicted in the B-strand conformation. The 31 to 45 segment may be another
potential membrane-embedded segment possibly involved in dimenzation or oligomerization
process 1n the membrane environment that can lead to cell killing.

Table 6
Complete prediction results for the gef ecoli protein by using the Kyte-Doolittle hydropathy
scale through preference functions2

AA PS PTM PH PB PT PU MA MB HT PB+MB-2

1 M C U 000 000 033 158 ND ND -033 ND
2 K C U 002 029 062 149 ND ND -060  ND
3 Q C U 006 054 081 142 138 108 -0.75 -038
4 H C U 048 079 106 133 121 033 -057 -0.88
s K C T 102 08 130 112 107 021 -027  -0.97
6 A H M 166 08 131 08 126 039 035  -0.73
7 M H O 232 074 08 060 1.17 034 147  -091
8 I H O 300 053 049 032 061 100 251  -047
9 V H O 365 028 019 010 053 052 346  -1.19
10 A H O 417 011 008 002 079 060 410  -1.29
11 L H O 457 002 004 001 073 074 453  -1.23
12 I H O 471 001 002 000 092 092 469  -1.07
13V H O 475 001 002 000 107 059 473  -141
14 I H O 475 00l 002 000 111 060 473  -1.39
15 C H O 474 001 002 000 097 056 472  -143
16 I H O 474 001 005 001 096 056 468  -143
17 T H O 472 00l 006 001 111 038 466  -1.61
18 A H O 464 001 006 001 122 055 457  -144
19 V. _H O 433 006 005 001 107 048 428  -146

Continued on next page.
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Table 6 - Continued

20V H O 393 021 015 005 167 0.14 378 -1.65
21 A H O 358 043 044 021 172 0.16 313 -1.42
22 A H O 315 074 072 042 105 055 243 -0.71
23 L H O 250 107 085 059 117 048 165 -0.45
24V H M 188 121 094 065 099 048 094 -0.30
25 T C T 131 126 134 076 097 044 -0.03 -0.30
26 R C T 098 120 177 090 102 023 -078 -0.57
27 K C T 071 119 187 1.07 081 052 -1.16 -0.29
28 D C T 041 112 146 114 083 051 -1.05 -0.37
29 L C U 018 105 103 126 065 034 -085 -0.61
30 C C U 018 126 077 134 095 059 -059 -0.15
31 E B E 017 137 076 135 089 063 -058 0.01
32V B E 016 143 091 129 077 068 -0.75 0.12
33 H B E 011 127 092 124 083 077 -08l 0.04
34 1 B E 014 146 107 125 070 074 -093 0.20
35 R C E 016 128 102 128 045 127 -086 0.55
36 T B E 024 133 130 124 052 134 -1.06 0.67
3T G B E 023 140 129 119 059 116 -1.06 0.55
383 Q B E 031 144 139 108 057 110 -1.08 0.54
39 T B E 044 163 121 114 079 091 -0.77 0.54
40 E B E 049 164 110 107 053 091 -0.6l 0.55
41 V B E 064 183 107 106 064 086 -043 0.69
42 A B E 065 177 102 100 095 055 -036 0.32
43 V B E 063 203 106 09 09 044 -044 0.47
44 F B E 063 178 108 100 071 036 -045 0.14
45 T B E 052 197 117 101 065 033 -065 0.30
46 A B B 038 155 117 112 1.16 040 -0.79 -0.05
47 Y C E 034 120 095 125 109 095 -0.6l 0.15
48 E C U 015 081 074 139 061 115 -059 -0.04
49 S C U 003 022 052 151 ND ND -049 ND
50 E C U 004 016 039 154 ND ND -036 ND

a0One letter amino acid codes are used in the second column (AA). Predicted structure (PS) 1n
the third column can be a-helix (H), B-sheet (B) or coil (C) structure that includes turn and
undefined structure. Residues predicted in the transmembrane helix configuration (PTM) in the
fourth column are labeled with letter 'M' except for highly probable TMH conformation when
letter 'O' is used. Residues with a potential to form transmembrane B-strands are labeled with
letter 'E' in the fourth column. The coil (C) conformation from third column 1s specified as
undefined (U) or turn (T) conformation in the fourth column. Fifth to eighth column contain
smoothed preferences for a-helix (PH), P-sheet (PB), turn (PT) and undefined (PU)
conformation. The columns 9 and 10 contain numerical values for hydrophobic moments
calculated in the case of assumed o-helix configuration (MA) and for moments calculated for
assumed P-sheet configuration (MB). Last two columns contain PH-PT difference of
preferences (H-T) that helps in visual identification of predicted transmembrane helices and
PB-+MB-2.0 scores that help in prediction of potential membrane-embedded B-strands.
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Since interaction of transmembrane helices is not directly taken into account by us it is
possible that our prediction for proteins expected to have large number of transmembrane
helices systematically err on the side of underprediction. One such example may be the calcium
channel subunit cicl _cypca in which fourth and tenth potential transmembrane segments are
‘not predicted. Another such example is the human erythrocyte anion exchanger b3at_human in
which our prediction of 13 transmembrane helices 1s associated with one underpredicted TMH
(residues 460-479) according to the 14 TMH topological model of Wang ef al [76].
Underpredicted segment has three Glu residues and not enough high preference peak, so that 1t
1s rejected by algorithm's filter procedure, but can be recognized from preference profile (not
shown) as potential TMH segment. Earlier models for a monomer of the Band 3 dimmer [77]
predicted only 12 membrane-spanning o-helices, but one of the authors [53] later observed
‘that 'inner’ helices can be easily overlooked when sufficiently long hydrophobic segments are
sought, since such helices can span the membrane only partially and without direct contact
with lipid environments.

Binding of ligands or cofactors is not taken into account too, but it can conceivably
change the potential for formation of regular secondary structure for sequence segment that
interacts with a ligand or cofactor. Underprediction was seen for the tromboxane A synthase
(thas human), a member of the P-450 family, which probably binds heme-thiolate at the
position 479. The fifth transmembrane segment, that 1s underpredicted both by us and Rost er
al. [9], starts with residue 480 1n the tromboxane A synthase topological model reported by the
SWISS-PROT data base.

Gross errors in the topological models adopted by the authors and by the SWISS-
PROT or some other data base can be easily detected by our algonthm. We have very strong
prediction of three transmembrane helical segments (14-36, 139-160 and 166-189) for the
TOLQ protein from Escherichia coli. Only the first TMS from residues 23 to 43 1s correctly
predicted according to the SWISS-PROT assignment of the bitopic transmembrane topology
for that protein. Interestingly, very similar protein exbb_ecoli has SWISS-PROT release 29
assignment of three transmembrane segments too. Two commonly used methods for predicting
transmembrane helices, that of Eisenberg et al. [18] and that of Rao and Argos [20] also
predict three transmembrane segments for tolq ecoli, while Rost ef al. method [9] predicts
four transmembrane segments for that protein. Small number of homologues for that protein
(only 3) and a need to filter predicted 'transmembrane segment' having 66 residues is the likely
cause for the proposed four helix model by the automatic E-mail service of Rost et al. [9].

3.7. Testing for false positive predictions in membrane and soluble proteins of
crystallographically known structure

Ten integral membrane proteins of well known structure (BESTP, Methods) have been
tested first. Only the Kyte-Doolittle and our modification of the Kyte-Doolittle scale
(MODKD, # 83) were able to predict all od these ten membrane proteins with 100% correct
transmembrane topology, 1.e. all transmembrane helices were correctly predicted at their
observed sequence locations and there were no overpredicted TMH (Table 7). Only the
Chothia buned surface scale (CHOTH, # 29) did not recognize one of ten membrane proteins
as the membrane protein (the subunit H from the photosynthetic reaction center from R.
viridis). Nine long extramembrane helices in these 10 proteins were not predicted as TMH by
any of 12 tested amino acid scales. That these sensitive tests of our predictor do not depend on
the chosen training procedure was checked by using different training procedures. After
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training the algorithm on 63 proteins selected by Rost ez al. [9] or on 105 proteins selected by
us with the addition of 37 B-class soluble proteins (SOLB1) the results were very similar (not
shown). Another sensitive test was made possible when the crystal structure of cytochrome ¢
oxidase from Paracoccus denitrificans [14] became known during work on this report.
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Figure 3: Score profiles for cx1b_parde (Figure 3A) and for cox3_parde (Figure 3B) of
cytochrome oxidase from Paracoccus denitrificans [14] are obtained by substraction of turn
preferences from o-helix preferences (full line). Digital predictions, as outcome of the best
training procedure for the SPLIT algorithm with Kyte-Doolittle hydropathy scale (Methods),
are shown as bold horizontal bars at the score level 0.5. Observed location of TMH segments
are shown as bold horizontal bars at the score level 0.2.
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With our best file of Gaussian parameters (best' training procedure, Methods) we
correctly predicted all of 12 TMH in cx1b_parde (Figure 3A) and all of 7 TMH in cox3 _parde
(Figure 3B) without single overpredicted TMH. Subunit IV was not tested, while in the
cox2_parde two TMH were predicted correctly and two overpredicted. Predicted 'TMH' at
residues 12 to 30 is the signal sequence. Predicted "TMH' at residues 192 to 216 has atypical
flat profile with maximum height less than half of other peaks. Three observed B-strands: 190-
194, 200-204 and 209-216 at that position are not seen by the algorithm when it makes the
automatic choice of decision constants (Methods) such that B-structure is depressed. Setting all
decision constants to zero eliminated this erroneous TMH prediction. When these 3
pohipeptydes are added to 10 considered above, the total score 1s 49 correctly predicted TMH
out of the total number of 49 observed TMH (not counting the signal sequence), with one,
easy to detect, overprediction. This result did not change in the case when 105 integral
membrane proteins were used to train the algonithm and to extract corresponding file with
Gaussian parameters, but one TMH was overpredicted in the cox3 at sequence segment 198-
213 when 63 or all of 168 proteins were used in the training process. Setting all decision
constants to zero eliminated this overprediction as well in both cases. Standard training
procedure with the MODKD scale (Table 4) produced 100% correct topology for subunits
cx1b and cox3 and the same two overpredicted TMH in the cox2.

Table 7
Test of best 12 amino acid attributes in predicting TMH in membrane proteins of known
structure?

# correct TMH  # predicted # correct M. P.  # predicted

Scale # ATM pred. TMH pred. M.P.

1 0.695 28 | 28 10 10
83 - 0.693 28 28 10 10
52 0.682 27 28 8 10
53 0.679 27 28 8 10
29 - 0.676 27 27 9 9
17 0.644 | 27 30 7 10
35 0.626 27 29 7 10
100 0.616 27 29 7 10
30 0.603 27 31 6 10
4 0.547 27 31 5 - 10
9 0.527 - 27 32 5 10
26 0.523 27 32 6 10

ATested proteins (BESTP, Methods) had 28 observed TMH with 717 residues in the TMH
conformation. Standard training procedure was used with each choice of amino acid attribute.
Code numbers for amino acid scales are listed in Table 5.
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By using our standard  Table 8
training procedure the tests were  The prediction performance of 12 best amino acid scales
performed on membrane proteins  (Table 5) on soluble proteins?
of known or partially known b b
structure with transmembrane - Scale # SOLUI SOLU2
strands and on soluble proteins of
known structure. For seven tested 17 1.2 122

porins and two  defensins 53 11.2 12.2
(PORINS, Methods) we tested 12 30 11.2 13.6
1t)l:35t sca]ﬂes#u:ec[isigr; Tab(l;, t’fe.dOnly 52 112 13.6
e scale predicted one o -

transmembrane segment in the o- 83 | 128 13.6
helix conformation (residues 119 100 13.4 - 143
to 133 in the porin sequence from - 35 15.0 16.3
Rhodobacter capsulatus).  For 1 139 177
two different sets of soluble 29

proteins SOLUl and SOLU2 19.3 17.7
(Methods) prediction results are 9 214 19.0
collected in Table 8 as percentage 26 203 19.7
of proteins falsely predicted to be 4 257 23 8

membrane proteins. The best
scales for TMH prediction i1n
membrane proteins still falsely

a0nly the percentage of proteins predicted with one or
. more transmembrane helices is reported. Code numbers
predicted 11-12% of soluble g\ hinGg acid scales are listed in Table 5.

proteins as being membrane  bpyui, pase of soluble proteins of known structures (see
proteins with at least one  pgopo4q)

transmembrane helix.

3.8. Cross-validation, overtraining and sensitivity to the choice of protein data base

| After standard training procedure tests were performed separately on the subsets of 80
proteins having only one observed TMH and 88 proteins having more than one TMH. All
performance parameters registered higher prediction accuracy for 80 proteins having only one
transmembrane segment. The best result of Ay = 0.778, Q; = 97.5% and Qp = 92.5% was
achieved in the 2 times cross-validation procedure when training was done on 88 proteins
having more than one TMH and 37 soluble proteins of PB-class. Interestingly, training and
testing on the same data set of 80 membrane proteins (with 37 soluble B-class proteins included
as always in the training procedure) produced huge overprediction of predicted TMH and very
poor performance parameters Aty = 0.285 and Qg = 52.5%. The percentage of accurately
predicted transmembrane helices remained the same: Qg = 97.5% or 78 correctly predicted
TMH of 80 observed, but total number of predicted TMH jumped from 84 to 139, while
number of overpredicted TMH jumped from 6 to 61! Commonly used Qg parameter gives
obviously wrong picture of the prediction performance in this case. More surprising result is
such extreme advantage of cross-validation procedure versus training and testing on the same
data set of integral membrane proteins. Slight advantage of the cross-validation procedure is
seen too when all of 168 reference proteins are used for training and for testing (compare
performance parameters in the first two rows of Table 9). Needless to say, we always expect a
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decrease in the prediction performance when training is no longer performed on the same data
set that is used for testing procedure.

Table 9
Different training procedures?
ATMm Qg A Qp # prot tested

a) Five-times cross validation 0712 953 0898 774 168
(Supplementary Material Table V).
b) No cross-validation. All of 168
membrane proteins used to trainand 0709 947 0891 762 168
to test.
c) No cross-validation. Best training
procedure (Methods). 0712 950 089 76.8 168
d) Two-times cross validation: 63
proteins to train and 105 to test and 0704 959 0903 786 168
vice versa.
e) Train on 105 proteins. Test on 63. 0.740 979 0934 841 63
f) Train on 63 proteins. Test on 105. 0682 947 0885 752 105
g) Train on 105 protens. Test on 105.  0.693 94 0 0.878 733 105
h)Train on 63 proteins. Test on 63. 0.737 975 0905 76.2 63
1) No cross-vahdation. Soluble |
proteins SOLB2 used instead of 0705 944 0890 744 168

SOLBI1 during training procedure.

3The Kyte-Doolittle scale is used in each case. See Methods for performance parameters.

The clue is offered by such training procedure when only 16 residues next to each side
of a transmembrane segment are used to extract sequence environments. Then it becomes
possible to use 80 proteins having single TMH both for training and for testing and to obtain
high performance parameters: A1y =0.777, Q, = 97.5% and Q= 92.5%. It would seem that
dominant contribution of sequence environments from extramembrane parts of membrane
proteins with single TMH must be reduced if balanced training is to be achieved. This can be
done either directly by omitting residues from the training process that are far removed from
expected transmembrane segments or indirectly by choosing the training data base of
membrane proteins with balanced contrnibution of residues in transmembrane and 1n
extramembrane positions.

That need for balanced training is not the whole explanation becomes clear when the
PREF algonthm is modified in such a way that is always collects exactly the same number of
environments associated with different secondary structure motifs. Again poor prediction
results are obtained when bitopic proteins are used for training and for testing (not shown).
When all of 168 membrane and 37 soluble proteins are used in a balanced training procedure
prediction results for 168 proteins remain similar for the TMH prediction (Ampg = 0.702), but
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overall prediction of all secondary structures is dramatically improved (Q; = 0.775) meaning
that turn and undefined residues are much better predicted.

The extraction of preference functions, as the training procedure, is not a very powerful
training procedure and it is not expected to lead to overtraining. We shall test this assumption
by performing still another two-times cross-validation test in which 168 membrane proteins are
divided into 63 proteins used by Rost ef al. [9] and 105 proteins used by us. Table 9 lists
performance results for different combinations of training and testing procedures.

Table 9 results indicate that extraction of preference functions as the part of the training
procedure does not lead to overtraining, because training on an independent set of unrelated
proteins can produce even better results. It is still possible that either automatic or subjective
choice of filter parameters leads to overtraining. All our filter parameters were trained on the
subset of 63 proteins and with the choice of the sliding window length of W = 9 residues. A
drop 1n prediction accuracy when W = 11 (window length used in all presented results) is used,
for the same subset of 63 proteins, was indeed observed (not shown). Since W = 11 seems to
be optimal for much larger group of transmembrane segments (Table 2) it is indeed possible to
increase apparent prediction accuracy by variation of filter parameters. To avoid such a danger
we did not try to optimize filter parameters for a final choice of sliding window length (W =
11) and protein data base (168 proteins).

Hawving a larger reference set of nonhomologous proteins for extracting preference
functions will not increase prediction accuracy. Safe lower limit is difficult to estimate, but is
probably no more than 30-40 such proteins. In terms of residues considered for extraction of
preference functions only about 4500 residues were enough to achieve very high prediction
accuracy (Amy = 0.777) in the case of bitopic (single-span) membrane proteins. A different set
of soluble proteins in the training hst of proteins may change slightly the prediction
performance (last row in Table 9).

3.9. Comparisons with other methods

An automated FTP service was used to obtain the predictions for all of our 168 integral
membrane proteins by using the Rost ef al. method [9]. A total of 11870 residues were
correctly predicted in the TMH conformations, 2436 residues were overpredicted, 2512
residues were underpredicted, while 50335 residues were correctly predicted not to be in the
TMH conformation. One of many different performance parameter that can be constructed by
using these data is the Ay, parameter (Methods). Its value 1s A1y = 0.656, which 1s inferior
to our value of 0.712 (Table 9) for the same parameter. However, when tested on the subset of
63 proteins used by Rost ez al. [9] the A1yps parameter, calculated from predictions returned by
~ automated service, becomes 0.733, which is comparable to our value of A1yg = 0.740 for the
same subset of proteins (Table 9). Similar test on the subset of 105 proteins, never before seen
in the training process for the neural network algorithm, gave quite a low value of Ay =
0.610 for the Rost ef al. method [9). That value is lower than our value of Ay = 0.682 for
the same subset of 105 proteins (Table 9). All of 63 proteins selected by Rost ef al. [9] are also
predicted as membrane proteins, but their method does not recognize 2 out of 105 membrane
proteins selected by us. Underprediction of membrane proteins i1s due to serious
underprediction of transmembrane helices: 50 of observed 419 TMH are underpredicted and
11 overpredicted by Rost et al. [9]. For comparison our Table 9 results (row f) for A are
obtained for the case of 21 underpredicted and 25 overpredicted TMH in the same test set of
105 proteins.
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The prediction results for three commonly used prediction methods: that of Rao and
Argos [20], that of Eisenberg et al. [18], and that of Rost ef al. [9] can be compared with our
results listed in Table 7 for the data set of 10 best known membrane proteins with observed
717 residues in the membrane-spanning helix conformation (Supplementary Material, Table
V). Eisenberg's algorithm overpredicts 5 helices in the subunits M, and L from the
photosynthetic reaction center, and has correspondigly low performance parameter for all ten
proteins: Ary = 0.470 (195 underpredicted and 185 overpredicted residues). Rao and Argos
algonithm [20] has better performance of Ay = 0.562, but large number of residues (314) is
still underpredicted or overpredicted. Rost et al. neural network algorithm [9] used some
subunits of the photosynthetic reaction center for training and achieved a much better result:
Ay = 0.702 with 108 underpredicted and 106 overpredicted residues. Only one helix was
underpredicted (the N-terminal transmembrane helix from the light harvesting center).

Residues 1n three transmembrane helices of the LHC-II are underpredicted by all four
methods, the likely reason being increase in helix preference due to binding of chlorophylls
which 1s not taken into account by these methods. The whole first helix is underpredicted in
Rost et al. [9] and Rao and Argos method [20]. It may seem strange that Rost ef al. method
[9] can predict 7 of 35 residues in the first transmembrane helix of the cb21 pea protein, but
cannot repeat even such partial success when shorter but otherwise identical LHC-II
polypeptide 1s tested. Filter elimination of signal sequences (see Discussion) and/or too short
potential transmembrane segments in the Rost et al. [9] procedure becomes critical when
polypeptides lacking complete N-terminal section in front of a potential TMS are considered.

Our result Ay = 0.695 (Table 7, Kyte-Doolittle scale) for all of 10 membrane proteins
becomes Ay = 0.714 (56 underpredicted and 23 overpredicted residues, all 11 TMH
correctly predicted) when only H, M an L subunits of the photosynthetic reaction center from
Rhodopseudomonas viridis are considered. This can be compared with Fasman and Gilbert
[78], and Ponnuswamy and Gromiha [47] evaluation of many different methods for predicting
transmembrane helices when these same three polypeptides are used as very restricted 'standard
of truth’. The Kyte-Doolittle [17], Sieved Kyte-Doolittle [21] and Klein-Kanehisa-DeLisi
procedure [19] are associated with prediction accuracy lower than Aps = 0.7, while von
Heyne [79], Engelman-Steitz-Goldman [59], Esposti-Crimi-Ventruoli [54], and Ponnuswamy-
Gromiha procedure [47] are associated with higher prediction accuracy.

We have also compared two powerful prediction methods, that of Jones et al. [33] and
Rost et al. [9] with our own (JLT) by testing greater number of proteins whose expected
transmembrane structure is taken from the SWISS-PROT data base. For 83 proteins used by
Jones et al. [33] one can extract Ag and Q, performance parameters as Ag = 0.928 and Q, =
79.5%. For 69 proteins tested by Rost et al [9] As and Q,, parameters are 0.896 and 79. 7%
respectively. For 63 proteins tested by us these parameters are Ag = 0.934 and Q,, = 84.1%
(Table 9).

Overprediction of transmembrane segments in large eukaryotic proteins having single
transmembrane achoring segment is common deficiency of many prediction methods [33]. Our
algonthm overpredicts six and underpredicts two transmembrane segments in the data base of
80 membrane proteins expected to have single transmembrane helix. For instance, in the case
of epidermal growth factor receptor precursor: egfr human Jones ef al. [33] overpredicts two
transmembrane segments. Our method adds to correct prediction of the segment 646 to 668 an
incorrect prediction for residues 777 to 798. Rost et al prediction 648-666 without
overpredicted segments 1s even better [9]. The price paid for reduced overprediction in single-
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span proteins 1s seen much better when Rost ef al. method [9] is tested on never-before-seen
data set of 105 membrane proteins containing 48 single-span proteins. Then two proteins:
fish_ecoli and spir_spime are not predicted as membrane proteins, because Rost at al. [9] do
not find a single transmembrane segment in these proteins. Cell division protein fish is strongly
predicted with two transmembrane helices at correct sequence location by our method
(Supplementary Material, Table I'V). Spiralin is predicted by us as membrane protein, but with
transmembrane segment at the N-terminal (residues 3 to 21) instead from residues 165 to 184
(SWISS-PROT assignment).

Underpredictions of the last transmembrane segment in G-protein coupled receptors
with seven transmembrane segments are also commonly seen by our and other methods [33].
This is the case with a2aa human, aa2a_canfa, acm5 human, carl_dicdi, opsl calvi and
ops2_drome for our prediction. The seventh helix in the superfamily of seven-helix protein G-
coupled receptors contains retinyl-lysine in the case of opsins or may be adjacent to a potential
acylation site [80]. As a rule it can be recognized for potential TMH from preference profile as
the last of 7 sharp peaks (often with characteristic minimum pointing at sequence position of
functionally important lysine residue) even if the digital version of the predictor cannot predict
it.
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Figure 4: Score profiles for porin from Rhodobacter capsulatus are obtained by subtraction of
turn preferences from helical preferences (full line) and as sum of B-sheet preferences and
hydrophobic moment scores for assumed B-sheet conformation (dotted line). Kyte-Doolittle
scale [17] is used to calculate preferences, while PRIFT scale [SO] is used to calculate
hydrophobic moments. Observed transmembrane strands are shown as bold horizontal bars at
the score level 2.0.
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3.10. Using prediction profiles with both o and 3 motifs

Unrealistic initial assumption that only a-helices exist as transmembrane polypeptide
structure can be tested by using predictions for membrane or surface attached [-strands
(Methods) as well All tests in this section are done with decision constants fixed at zero.
Previously unseen possibilities for B-strand formation in the membrane environment become
apparent from profiles of summed B-preferences and B-hydrophobic moments (Figure 4 and
5). Dotted line in Figures 4 and 5 can be regarded as the score profile for potential formation
of membrane-buried or membrane attached B-strands (E' structure in the fourth column of
Table 6). As before we used the Kyte-Doolittle scale for preference calculation and the PRIFT
scale to find hydrophobic moments for assumed P-structure. Revealed potential for the -
structure formation in the membrane is quite robust with respect to the change in the choice of
hydrophobicity scale for preference calculation, notwithstanding the complexity of the scores
profile. Above mentioned combination of scales predicted correctly 79% of membrane-buried
B-strand residues in 9 membrane B-class proteins (PORINS, Methods), 72% of such residues
in three best known porins (porin from R. capsulatus OmpF and PhoE) and 76% of such
residues in the R. capsulatus porin. When algorithm is allowed to make its own choice od
decision constants these percentages raise to 87, 82 and 76 respectively. Only one membrane-
embedded PB-strand (the 15-th) is underpredicted in the R. capsulatus porin (Figure 4), but
there are two pairs of strands that are fused in our prediction. For three best known porins 7 B-
strands are underpredicted, 4 overpredicted and 7 pairs of strands are predicted fused.
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Figure 5: Nicotinic acetylcholine receptor achl_xenla profiles for finding potential

tansmembrane o-helices and B-strands. Same conditions and same notation is used as for the
Figure 4. Predicted transmembrane o-helices are shown as bold horizontal lines at the score
level 0.5.
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Underprediction of transmembrane helices, according to the SWISS-PROT reference
standard, was very serious but variable, for proteins belonging to mitochondrial carnier family
that are all expected to have six transmembrane helices [81-87]. The digitalization process in
the algorithm, that decides whether given segment 1s in the TMH conformation or not, is the
cause of instability in prediction performance for borderline cases. Preference and hydrophobic
moment profiles contain considerably more information about the arrangement of potential
transmembrane segments. Preference profiles (not shown) for the adt2 yeast, adtl bovin,
adt_neucr, mpcp_rat, ucp_rat, m2om_bovine, and txtp_rat agree that no more than 3105
“transmembrane helices can be predicted for each mitochondrial carrier protein and that second
expected transmembrane helix can never be predicted by using our method. Accepted
topological model for these proteins in the NBRF data base is three hydrophobic
transmembrane o-helices for the brown fat uncoupling protein and phosphate carrier [88]. A
B-strand that spans the membrane or three B-hairpins have been proposed for the adenine
nucleotide translocator [89,90,83]. All mitochondnal carrier proteins have a tripartite structure,
with three similar repeats about 100 residues each [82,91]. Our prediction profiles often better
exhibit the tripartite symmetry for the profile of potential membrane attached or
transmembrane B-strands than for predicted transmembrane ¢.-helices (not shown).

The question of how many TMH segments are in the nicotinic acetylcholine receptor
subunits has been going on for a number of years [92]. Earlier reviews [93] supported the four-
TMH model. The possible existence of a scaffold of membrane associated 3-strands supporting
smaller number of transmembrane helices (may be only one) has been raised after low
resolution electron microscopy studies [29]. One recent review [30] concludes that of four
proposed TMH: M1, M2, M3 and M4 only M2 and M4 are the TMH while M1 and M3 most
probably form B-structures. M2, M3 and M4 are o-helical according to Blanton and Cohen
[92]. Our TMH predictor strongly predicts all of M1 to M4 segments as TMH segments in the
achl xenla (Figure 5). High potential (dotted line) for the formation of membrane-buried -
strands is found in sequence domains 101-116, 138-159 and 341-364. Predicted percentage of
o-helix transmembrane configuration (24%) is less than 34% [94] or 44.5% [95] suggested by
circular dichroism experiments for the whole protein a-helix conformation, but similar to 25%
suggested recently by hydrogen/deuterium exchange experiments [96]. Observed percentage of
B-sheet residues (29% reported by Moore et al. [94], 34% reported by Chang et al., [97]) 1s
higher than predicted 96 residues (22%) in the potential membrane-embedded [-sheet
conformation by our TMBS predictor. Observed percentage of [ structures in the
transmembrane domains alone (40% if B-turns are included according to Gorne-Tschelnokow
et al. [98]) is probably enough for the formation of six membrane buried -strands in the
presence of four transmembrane helices. Potential transmembrane sequence segments of o and
B type, that are predicted by our algorithm, must be able to form novel combination of
transmembrane regular structure.

Membrane import machinery protein mas6_yeast was predicted with a maximum of
only two short transmembrane helices 101-116 and 201-215, instead of four expected, but with
many potential amphipathic B-strands. High peak in B-amphipathicity just next to the LDL or
IDI motif is found at the mas6 yeast residue # 69, mpcp_rat (from mitochondnal carrier
family) residue # 83 and achl xenla residue # 350. Observed amphipathic B-structure of a
leucine rich repeat peptide LRP32 also contains LDL motif [99]. This motif may be important
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in protein-lipid interactions because the peptide LRP32 integrates into lipid bilayers, probably
as oligomer, forming amphiphatic B-sheet and promoting ion conductances.

The tonb_ecoli protein may be the molecular machine which transduces protonmotive
force into mechanical energy [100]. Its proposed transmembrane topology with two potential
TMH and three potential transmembrane B-strands [100] 1s key to the understanding how 1t
connects inner bacterial membrane to outer membrane receptor proteins. We predict only one
TMH for residues 13 to 32, probably anchored in the inner bacterial membrane, and several -
strand segments mostly close to the C-terminal, which can interact with outer membrane due to
unusually long rigid and highly charged domain which connects these two domains. Our
proposed structure for TonB is similar to proposed structure for the TolA protein [101] from
Escherichia coli, which is also thought to connect inner and outer membrane. Very long
connecting domain II of TolA (residues 48 to 310) has been modelled as an o-helical tether.
Our prediction of transmembrane segment 14-33 1n the TolA agrees with expected span 14-35
[101]. No TMH is predicted by us in the domain II region. This domain is associated with high
preference for extramembrane o-helical conformation, but with very low preference for our
transmembrane 'H' conformation.

4. DISCUSSION

The observation that conformational preferences are specified by the contexts - local
segment primary structure, amino acid attributes, the three-dimensional environment in protein
and environmental media, has been discussed before [102-105]. Algonthms that do take into
account context-dependence of preferences [106] generally perform better for secondary
structure prediction. In this report simple mathematical representation of context dependence 1s
obtained through preference functions that are analytical functions of the surrounding sequence
hydrophobicity or of any other amino acid attnbute. Furthermore, preference functions are
used to predict secondary structure motifs. It has turned out that for integral membrane
proteins preference functions are excellent predictors of transmembrane segments in helical
conformation. In fact preference functions are much better predictors than the hydrophobicity
scale chosen to extract these functions.

A case 1n point i1s the application of the Kyte-Doolittle hydrophobicity scale directly and
indirectly through preference functions. For the best known membrane proteins direct
application of the Kyte-Doolittle algorithm and of its improved versions [107] is inferior to the
performance of our algorithm that was also used with Kyte-Doolittle hydrophobicity scale. For
instance, helix B is not predicted as hydrophobic helix in subunits M and L of the
photosynthetic reaction center but only as an amphiphilic membrane-spanning helix [107].
Helix F from bacteriorhodopsin could not be predicted even after change in the window size,
but again only as an amphiphilic helix [107]. We did not use the hydrophobic moment
calculations for predicting transmembrane helices, but only as a help in predicting potential
membrane buried B-structures. We predict all of 11 transmembrane helices from subunits L, M,
and H from both bacterial sources (Rhodopseudomonas viridis and Rhodobacter sphaeroides)
without overpredicting membrane-spanning helices as happens when hydrophobic moment
analysis is used in the predictor [18]. In 10 integral membrane proteins of known structure all
observed transmembrane helices are predicted by us at their correct sequence location and
none of nine long extramembrane helices are confused with transmembrane helices.



435

Transmembrane helical segments are predicted by us with a high accuracy in 168 integral
membrane proteins. All of 168 tested membrane proteins are recognized as such, because at
least one transmembrane segment is predicted in each protein. No TMH is predicted in porins.

There are several reasons why preference functions, based on a chosen hydrophobicity
scale, are better predictors of transmembrane segments than that hydrophobicity scale. Helix
formation in a suitable environment is an cooperative process when nearby residues in a
sequence are not independent. In other words the preference for helix conformation of each
residue strongly depends on hydrophobicities of its sequence neighbors (Figure 1). The
sigmoidal shape of preference function dependence on average hydrophobicity, such as shown
in the Figure 1, is found for all amino acid types (not shown). It is suggestive of an cooperative
nonlinear process. This cooperative effect 1s most pronounced for transmembrane segments of
integral membrane proteins.

For bitopic membrane proteins, having only one transmembrane segment, local
sequence information should be enough to predict the sequence location of such a segment.
The prediction accuracy of 97.5% reported for such segments (our result) is impressive only in
the case when there is very little overprediction. In the case of bitopic membrane proteins we
have found two different traninig procedures for extracting preference functions that result in
high prediction accuracy without large overprediction. Obviously, such training procedures
cannot be included in algorithms that use the same hydrophobicity scale, but do not use
preference functions. One possible answer to the initial question is that preference functions are
so much better than simple use of hydrophobicity scale, because preference functions are firmly
connected with protein data base used for training and with secondary structure features
present or expected 1n that data base. Therefore, another important advantage of preference
functions 1s the possibility to enhance amino acid attributes or secondary structure preferences
through training process that ends with extraction of preference functions. In our recent work
[52] we demonstrated that enhancement of the Chou-Fasman type constant preferences for
transmembrane configuration, leads also to high prediction accuracy for transmembrane
segments, even if prediction model (two state model) and training procedure (without soluble
proteins) was completely different. Evidence that transmembrane helices are autonomous
folding domains [108] helps to clarify why many different methods of sequence analysis are
good predictors of transmembrane segments that are potential TMH segments.

Inability to distinguish an a-helix from [3-strand transmembrane structure is even more
serious weakness of hydrophobicity analysis. To build any reasonable topological model for
membrane protein we must know what is the secondary structure of its transmembrane
segments. Such information cannot be the output of any other algonthm that uses
hydrophobicity scale, without additional training that attempts to correlate amino acid
attributes with conformational motifs in proteins of known structure. Residues known to prefer
B-strand conformation in soluble proteins [109], are very frequent residues in known
transmembrane segments [62,110]. It is possible that some membrane proteins with
transmembrane helices have had predominantly B-structure before being incorporated in the
membrane [111]. When algorithms, trained on soluble proteins, attempt to predict secondary
structure of membrane proteins, transmembrane segments known to be helical are often broken
or predicted as 3-strands. Therefore, the training process that includes membrane proteins of

known or partially known structure is absolutely essential for the recognition of transmembrane
structural motifs.
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The need for more extensive training procedure was recognized by neural network

programmers, but they trained their algorithms only too well. Overtraining is more subtle, but
equally serious problem, that can greatly diminish prediction usefulness. A case in point is Rost
et al. neural network algorithm [9] whose performance is significantly decreased when tested
on never-before-seen set of proteins (Results section). Since we did not use evolutionary
- information (alignments of similar proteins) our choice of 105 integral membrane proteins was
unintentionally such that average number of possible homologues per one protein (as average
weighted number of alignments that do take into account sequence lengths) was smaller in that
group of proteins (14 per one protein) than in the set of 63 proteins selected by Rost er al. (23
per one protein) [9]). This would partly explain the decreased performance when 105
membrane proteins are tested with Rost ez a/. method whose accuracy depends on available
- evolutionary information [9].
" There are several reasons why overtraining may have happened during Rost ef al.
procedure despite careful cross-validation procedure [9]. Firstly, the pairwise homology among
chosen proteins was not always less than 30%, as documented before (Methods). In the
original set of 69 membrane proteins used by Rost er al. there was a subset of 47 proteins that
had less than 30% pairwise similarity with all other proteins from that subset and had on
average only 13 homologues per each protein [9]. The prediction accuracy, as measured for
that subset of proteins with the Apy, parameter (Methods), was only Aty = 0.665 as
compared with Appg = 0.736 for all of 69 proteins. The remaining subset of 22 proteins
(mainly opsins) with more than 30% pairwise similarity and with an average of 32 homologues
per protein was predicted with much higher prediction accuracy of Aty = 0.814. For
membrane proteins, considerably less than 30% similarity in the sequence may be needed,
when we want to exclude very similar folding motifs. Failure to exclude similar proteins will
cause an artificial increase in prediction accuracy in the case when similar proteins are
predicted with higher than average accuracy, no matter what prediction method is used.
Secondly, multiple alignment procedure, as a part of the training and testing process, was
spectfic for the chosen protein data base of 69 proteins [9]. It increased prediction accuracy for
that data base, but it does not have to do so for a set of nonhomologous never-before-seen
proteins that for instance are not associated with similarly large average number of homologues
per each protein from that data base. Thirdly n the data set of only 69 membrane proteins the
number of objects determining prediction accuracy is really quite small: not more than 20 to 30
transmembrane helices that are difficult to predict by using any prediction method. The
prediction accuracy becomes quite high when such specific patterns are learned, either through
direct training procedure or through the choice of filter parameters. Unfortunately, neural
network parameters learned in the process become very specific for such patterns that may not
repeat easily in proteins outside training data set. A known disadvantage of neural network
algonthm s its inability to tell us what it learned, in this case how it become capable of correct
prediction of transmembrane helices most difficult to predict.

Signal sequences are, as a rule, not predicted as transmembrane segments by the neural
network algorithm [9]. In our data base of 168 integral membrane proteins there are 32
proteins with signal sequences at the N-terminal (labeled with letter 's’, Methods). Rost ef al.
wrongly predict only 3 such proteins as having the transmembrane segment at the sequence
location of known signal sequence (cyoa ecoli, mypO _human and wapa_strmu) [9]. We
predict all of 32 signal sequences except two as transmembrane helices. Overprediction
happens because very high preference for transmembrane helix conformation is often
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associated with signal sequences. Somewhat shorter length of signal sequences does not help,
because many correct predictions of transmembrane helices are initially associated with
predicted short segments (12 to 16 residues that have high preference for transmembrane
helix). Filter modification with negative weight at protein N-terminal can easily eliminate most
of false positive predictions of TMS at the location of known signal sequences [52]. We did
not use such modifications in this work because it would lead to difficult to detect
underpredictions of real TMH at the N-terminal, while overprediction of TMH is easily
detected when it happens at the location of known sienal sequence. One advantage of omitting
filter modifications with respect to signal sequences is that potential signal sequences are
predicted as TMH with the same high accuracy as all other TMH, but then additional
information from experiments is needed to decide if potential TMH near N-terminal is indeed
true TMH or signal sequence. Another advantage is that primary structures without transit
polypeptide, or without N-terminal signal sequence next to first potential transmembrane
segment can be tested with assurance that first TMH will not be underpredicted due to
omission of the N-terminal segment. Underprediction of the whole first TMH, containing 35
amino acid residues, happens in the LHC-II sequence taken from the Nature article [13] or in
the cb22_pea sequence without transit polypeptide, when Rost ez al. method [9], optimized to
eliminate signal sequences from consideration, is presented with such truncated versions of
polypeptides.

Errors in the SWISS-PROT assignment of transmembrane segments will reduce the
prediction performance for all prediction methods that use this data base as ‘standard of truth'.
Such errors can indeed happen. We discussed the case of tolq ecoli protein from Escherichia
coli, which has only one transmembrane segment according to SWISS-PROT version 29
assignment, but s strongly predicted by us with three transmembrane segments in helical
conformation. The same topology of three transmembrane helices is currently accepted in the
SWISS-PROT data base for very similar exbb_ecoli protein.

Fortunately, many different theoretical and experimental procedures were used in
SWISS-PROT assignments for the proteins finally chosen by us, so that for the purpose of our
weak tramning procedure this set of proteins can be considered as reference set, but probably
not as the 'standard of truth’. Observed and predicted length distribution of transmembrane
segments 1n protein data base (Figure 2) may indicate that considerable room is still left for
improving the algornithm. However, average length of expected transmembrane segments in
our test set of 168 membrane proteins (21.7 residues) is quite close to predicted average length
(21.5 residues). In any event, the absence of length distribution for predicted transmembrane
segments that 1s in-built in some of simpler algorithms using hydrophobicity scales is quite
unrealistic.

The TMH predictor underpredicts some of expected transmembrane segments in
voltage-gated channels [112] (cicl_cypca case was mentioned in the section 3.6). Closer
analysis revealed that underpredicted TMS are highly charged S4 segments known to span the
membrane with less than 10 residues [113]. Although often missed by the TMH predictor
essential parts of channel machinery, such as S4 and P-segments of the Shaker potassium
channel pore [114, 115], are clearly resolved by our preference profiles (in preparation).

The main goal of this work was accurate prediction of transmembrane helical
structures, but we do realize that membrane proteins may exist that have both o-helices and B-
strands as transmembrane structure. Preference function method is capable of predicting
separately o-helical and B-strand conformation of segments that have potential to become
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membrane buried. Known structures of B-class soluble proteins are used in order to extract [3-
sheet preferences and as a help in extracting turn preferences. The reason why we had to
enlarge the data base of membrane proteins with soluble proteins of the -class 1s very simple.
Few porins of known structure were not enough to serve as the training data base for the
extraction of B-strand preference functions. Therefore, as the best substitute we used soluble
- proteins of the B-class. It is not an disadvantage to use much more abundant information
available in soluble proteins of known structure. The number of nonhomologous proteins used
to train preference functions for one secondary structural motif, can serve as the rough
estimate of what is the minimal number of proteins that must be used during training procedure
by our method (30 to 40 integral membrane proteins and the same number of soluble proteins
of the -class).

We have used a very simple procedure to predict transmembrane B-strands in porins.
As observed before [107,116] it is useful to take into account hydrophobic moment for
assumed P structure when the goal is to predict such a structure. The standard training and
~ testing procedure with the Kyte-Doolittle scale gives reasonably good results with porns and
defensins in terms of predicting transmembrane B-strands, but overprediction of membrane [3-
structure happens in the photosynthetic reaction center subunits in the case when decision
constants are fixed to zero values (not shown). Preliminary results with a choice of the Cid et
al. [69] hydrophobicity scale are encouraging both in terms of increased accuracy in predicting
TMBS and in terms of a low percentage of wrongly predicted TMH in soluble proteins (only 4
to 5% for our data sets of soluble proteins). At any rate, the prediction of P-strands, turn and
undefined conformations as well as the calculation of hydrophobic moment profile for assumed
o-helix and B-strand conformation helped to locate transmembrane helices and other potential
membrane-embedded regular structures.

One application of our standard training and testing procedure is for the nicotinic
acetylcholine receptor, where M1, M2, M3 and M4 segments are all strongly predicted as
transmembrane helices, but in addition there are several sequence domains with a potential for
membrane-embedded B-strands (Figure 5). Another application has been described 1n the case
of mitochondrial carrier family proteins. In many proteins from this family that have a known
tripartite structure we have seen such a structure revealed in great details through profile of
summed B-moments and B-sheet preferences (not shown). Contrary to the proposed six-helix
model for these proteins thought to be required to take account of the threefold repeat [82,83]
tripartite symmetry does not require the presence of two transmembrane helices in each of
three domains. A small change in the primary structure or even in polypeptide environment
may be enough to transform one regular structure into another in one of three domains without
significant change in the tripartite symmetry. Functional asymmetry of three domains 1s known
to exist in these proteins and some experimental evidence already exists that movement of
loops in and out of the membrane can regulate transport activity of the mitochondrial
ADP/ATP carner [117].

Our algorithm can give partial answer to the question what attributes are optimal
predictors for specific folding motifs. Kyte-Doolittle type hydropathy values and Chou-Fasman
type conformational preferences are two obvious answers to the question what amino acid
attributes are good predictors for majority of transmembrane helices. Indeed, three such scales
MODKD, KYTDO and CPREF (Table 4), are on the very top of the list of the best amino acid
scales (Table 5). Performance parameters that punish overprediction (ATM and Q p) give
advantage to hydropathy values. Modifications to the Kyte-Doolittle values in the MODKD
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scale increase prediction accuracy by increasing Trp and decreasing Ala importance for the
formation of TMH. Surrounding hydrophobicity scale for membrane proteins (PONG1) takes
into account actual hydrophobic environment in the three-dimensional protein structures. It
produces less of false-positive TMH predictions when tested through preference functions on
soluble proteins (Table 8). It appears that this scale can be used when an alternative to Kyte-
Doolittle scale [17] 1s sought, because very popular Engelman er al. scale [59] 1s associated
with up to 25% of false-positive TMH predictions (Table 8). Optimai scale for identification of
amphipathic helices (PRIFT) is obviously not optimal for the recognition of TMH. Solution
hydrophobicity scales such as FAUPL are clearly inferior to protein derived scales such as
PONGI, CHOTH or ROSEF. A good performance of scales that measure water-accessible
surface area loss upon protein folding has been noticed before [32]. More interesting are
relatively high Ay scores for polarity scales GRANT and WOESE and for the antigenic
‘determinant hydrophilicity scale HOPPW . It would be quite interesting, but outside the scope
of this work, to see if some transmembrane helices, difficult to predict by hydrophobicity
analysis, are well predicted by polarity or hydrophilicity attributes. Such job can be easily done
by using the PREF suite of algorithms, version 3.0. Even scales with inferior performance,
such as the Cid et al. scale [69], are potentially very useful when different folding motifs in the
membrane are being sought: transmembrane -strands instead of TMH.

The filter parameters of our optimal predictor for transmembrane helices were
optimized by using the Kyte-Doolittle scale and a reference set of 63 integral membrane
proteins having one or more of long transmembrane segments, for which experimental and
theoretical analysis indicated an o-helix configuration. Optimization of parameters was done by
trial and error procedure and certainly was not perfect. Automatic procedures for finding
optimal parameters for the TMH predictor were recently developed within the framework of
preference functions method [52]. We did not use such procedures due to their inherent
shortcomings: the danger of overtraining the predictor is then increased and due to the size of
optimization problem different order of parameter optimization can lead to different results. In
any case, it is quite possible that some other scale of amino acid attributes could have been
chosen initially in the optimization process to produce higher prediction accuracy than the
'KYTDO scale. The natural choice of scale associated with a chosen reference set of proteins is
the scale of statistical preferences, such as the CPREF scale, that can be extracted from that
data base of proteins. ,

To summarize, the practical advantages of using the PREF suite of algorithms are as
follows:

- It is much less expensive in computer time than a neural network algonthm.

- It works with equal expected high accuracy in the case when very few or no homologues are
known.

- It has the potential to identify those physical, chemical or protein-derived statistical properties
that are the most important for segment folding into the TMH configuration.

- Well known Kyte-Doolittle scale [17] can be used throughout, except in the case when
specific need exists to test other amino acid attributes.

-- All stages of prediction process are associated with transparent rules that are objective,
automatic and easily inspected.

- There is an automatic recognition of different folding types of integral membrane proteins
and automatic choice of decision constants for each type which improves the prediction
accuracy.
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- Thirty to forty membrane proteins and same number of soluble proteins of known structure
are sufficient to train the algorithm.

- Accurate prediction of transmembrane helical segments is superimposed on the prediction of
all other secondary structure elements of interest.

- Peaks in the transmembrane helical preference of lesser height and width can be used for
identification of primary structure segments of special interest such as signal sequences and
pore-forming segments (in preparation).

- Membrane-embedded or surface-attached B-strands can also be recognized from the sum of
prediction profiles for B-strand preferences and of hydrophobic moments for assumed [3-strand
conformation.

The negative aspects or disadvantages are as follows:

- Balanced training procedure is needed. Including many more extramembrane than
transmembrane residues in the training data set is wrong not only because of unbalanced
training procedure, but also because we know that undefined conformation is forced upon us
for extramembrane residues due to our lack of knowledge.

- A high percentage of soluble proteins are falsely recognized as membrane proteins (from 12
to 17%).

- Only one conformation is predicted with high accuracy: transmembrane helix conformation.
Predictions of other regular or irregular conformations are not associated with the same high
accuracy.

- The monotopic membrane proteins [118], that cross only one bilayer but not two, such as the
prostaglandin H2 synthase {119], and self-inserting membrane proteins or toxins [120], such as
colicin A [121], diphtheria toxin [122], beetle &-endotoxin [123] and annexin [124] are
associated with poor prediction (not shown).

Several improvements to the proposed method can be envisaged.

a) Multiple alignment was not used. It should improve prediction accuracy for a single tested
protein when thirty to forty homologous proteins exist. As already shown before [125], the
PREF method can use training data set of proteins specific for protein to be tested.

b) The prevalence of positively charged residues in the interior loops [60,79] or 'positive inside
rule' is shown to improve prediction accuracy of our algorithm [52], but was not used in the
present work. The predictor can become informative about the direction of membrane
crossing, especially in the case of plasma membrane proteins of bacterial origin, when 'positive
inside rule' is taken 1nto account.

c) It is not known if mixed type o/B or o+ structure can exist as transmembrane structure and
if so what combinations of o-helix segments and PB-strand segments may join to form
transmembrane structure. Extracting preference functions from large enough data base of
porins and related proteins with B-strand transmembrane structure will soon be possible. Then,
appropriate modification of PREF-SPLIT algorithm, along lines suggested in this report, will
serve to predict sequence location of both transmembrane o-helices and transmembrane §-
strands.

Availability of the prediction with preference functions. We have set up an automatic
electronic mail server at the Internet address: predict@drava.etfos.hr. The server will return
complete prediction results, such as given in Table 6, when provided with the sequence of your
protein. For further information, send the word Aelp to the server. Questions, comments and
suggestions should be sent to juretic@mapmf pmfst.hr or zucic@mia.os.carnet hr.
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SUPPLEMENTARY MATERIAL AVAILABLE via INTERNET

Two data bases of soluble proteins of known structure used to find false positive prediction
results (Table I and Table II). Gaussian parameters needed for evaluation of preference
functions based on the Kyte-Doolittle hydropathy scale [17] (Table III). Table with detailed
prediction results for transmembrane helices in 168 integral membrane proteins (Table 1V).
Table with a detailed comparison of prediction results for 10 best known membrane proteins
for our and three other algorithms (Table V). All these tables together with the FORTRAN 77
source code are available from the anonymous fip server mia.os.carnet.hr in the /pub/pssp
directory. The anonymous login is fip and the e-mail address is accepted as password. The list
of files with short descriptions is contained in the 00index.txt file.
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